DOI QR코드

DOI QR Code

A Simplified Model for Physical Habitat Simulation in Evaluation of Environmental Flow

생태유량 산정을 위한 간편 물리서식처 모의 모형

  • 임동균 (한국건설기술연구원 하천.해안항만연구실) ;
  • 최영우 (연세대학교 토목환경공학과) ;
  • 최성욱 (연세대학교 토목환경공학과) ;
  • 강형식 (한국환경정책평가연구원 물순환연구실)
  • Received : 2010.12.21
  • Accepted : 2011.01.21
  • Published : 2011.04.30

Abstract

Physical habitat assessment models based on Instream Flow Incremental Methodology have been developed as a decision making tool to estimate appropriate discharge for environmental flow and water use management. These models, however, require extensive knowledge on various academic disciplines, complicated input data, and empirical data. We propose a Simplified Habitat (SIMHAB) simulation model for the estimation of physical structure of fish habitat and environmental flow at the planning stage. SIMHAB is applied to a river system for which physical and ecological data are available, and its applicability is investigated. Simulated results appeared to be similar to field survey data and those of such models as PHABSIM and River2D. However, SIMHAB requires much less input data. As such, the proposed model, SIMHAB can easily be applicable to river restoration projects including designing of physical habitat, estimation of environmental flow, and water resource management.

유량증분방법론에 근거한 물리서식처 평가 모형은 생태유량 산정과 하천의 이수 및 환경 기능과 관련한 유량 산정을 지원하기 위한 의사결정수단으로 개발되었다. 물리서식처 평가 모형은 다양한 관련 학문의 이해, 복잡한 입력자료, 그리고 경험을 필요로 한다. 본 연구에서는 계획 단계에서 물리서식처 구조와 생태유량 규모를 개략적으로 추정할 수 있는 간편 물리서식처 모의 모형(SIMHAB)을 제시하였다. SIMHAB을 물리 및 생태자료가 있는 하천에 적용하고 모형의 적정성을 검토하였다. 제시된 모형은 현장자료와 PHABSIM 및 River2D와 같은 기존의 물리서식처 모형의 결과와 유사하나, 적은 입력자료를 필요로 한다. 따라서 SIMHAB은 물리서식처, 생태유량, 수자원 관리 등을 포함하는 하천복원 사업에 손쉽게 활용될 수 있을 것이다.

Keywords

References

  1. 강형식, 임동균, 김규호(2010) 댐 하류 하천에서 발전방류로 인한 어류 물리서식처 변화 수치모의. 대한토목학회논문집, 대한토목학회, 제30권 제2B호, pp. 211-217.
  2. 국토해양부(2009) 자연과 함께하는 하천복원 기술개발, 국토해양부.
  3. 김규호(1999) 하천 어류 서식 환경의 평가와 최적유량 산정, 박사학위논문, 연세대학교.
  4. 김지성, 한건연, 이창희(2007) 천이 하천에서 정상 부등류 해석 모형 개발. 대한토목학회논문집, 대한토목학회, 제27권 제3B 호, pp. 219-228.
  5. 성영두, 박봉진, 주기재, 정관수(2005) 하천의 어류 서식환경을 고려한 생태학적 추천유량 산정. 한국수자원학회논문집, 한국수자원학회, 제38권 제7호, pp. 545-554.
  6. 이주헌, 정상만, 이명호, 이용수(2006) 유지유량 증분 방법론 (IFIM)에 의한 한강수계 지류에서의 어류서식 필요유량 산정. 대한토목학회논문집, 대한토목학회, 제26권 제2B호, pp. 153- 160.
  7. Bovee, K.D. (1982) A guide to stream habitat analysis using the instream flow incremental methodology. Instream Flow Information Paper No. 12, U.S. Fish and Wildlife Service, Office of Biological Services, FWS/OBS-82/26, Fort Collins, Colorado.
  8. Bovee, K.D., Lamb, B.L., Bartholow, J.M., Stalnaker, C.B., Taylor, J., and Henriksen, J. (1998) Stream habitat analysis using the instream flow incremental methodology. U.S. Geological Survey, Biological Resources Division Information and Technology Report, USGS/BRD-1998-0004.
  9. Cassie, D. (1995) Hydrometeorological conditions for the Miramichi River basin during 1994, Department of Fisheries and Oceans Atlantic Fisheries Research Document 95/88.
  10. Ginot, V. (1995) EVHA, a Windows software for fish habitat assessment in streams. B. Fr. Peche Piscic. 337.
  11. Johnson, N., Revenga, C., and Echeverria. J. (2001) "Managing Water for People and Nature". Science, Vol. 292, pp. 1071- 1072. https://doi.org/10.1126/science.1058821
  12. Jowett, I.G. (1996) RHYHABSIM, River Hydraulics and Habitat Simulation, Computer Manual. National Institute of Water and Atmospheric Research (NIWA) Report, Hamilton.
  13. King, J.M. and Tharme, R.E. (1994) Assessment of the Instream Flow Incremental Methodology and Initial Development of Alternative Instream Flow Methodologies for South Africa. Water Research Commission Report No. 295/1/94.
  14. Lee, J.H., Kil, J.T., and Jeong, S. (2010) Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model. Ecological Engineering, Vol. 36, No. 10, pp. 1251-1259. https://doi.org/10.1016/j.ecoleng.2010.05.004
  15. Milhous, R.T., Updike, M.A., and Schneider, D.M. (1989) Physical habitat simulation system reference manual-version II. Information Paper No. 26. U.S. Fish and Wildlife Service, Office of Biological Services Program, FWS/OBS-89/16, Fort Collins, Colorado.
  16. Revenga, C., Brunner, J., Henninger, N., Kassem, K., and Payne, R. (2000) Pilot analysis of global ecosystems: freshwater ecosystems, World Resources Institute, Washington, DC.
  17. Schneider, M. (2001) Habitatund Abflussmodellierung fur Fliessgewasser mit unscharfen Berechnungsansatzen - Weiterentwicklung des Simulations modells CASIMIR. Institut fur Wasserbau, Universitat Stuttgart, Mitteilungen 106, Dissertation.
  18. Spence, R. and Hickley, P. (2000) The use of PHABSIM in the management of water resource and fisheries in England and Wales. Ecological Engineering, Vol. 16, pp. 153-158. https://doi.org/10.1016/S0925-8574(00)00099-9
  19. Steffler, P. and Blackburn, J. (2002) River2D, Two-dimensional depth averaged model of river hydrodynamics and fish habitat. Univesity of Alberta.
  20. Swales, S. and Harris, J.H. (1995) The expert panel assessment method (EPAM): A new tool for determining environmental flows in regulated rivers. The Ecological Basis for River Management, Wiley, Chichester, pp. 125.134.
  21. Tennant, D.L. (1976) Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, Vol. 1, pp. 6-10. https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2
  22. Yi, Y., Wang Z., and Yang, Z. (2010) Two-dimensional habitat modeling of Chinese sturgeon spawning sites. Ecological Modelling, Vol. 221, No. 5, pp. 864-875. https://doi.org/10.1016/j.ecolmodel.2009.11.018