References
- 김남형, 고행식(2007) SPH 기법을 이용한 물기둥 붕괴의 수치 모의, 대한토목학회논문집, 대한토목학회, 제27권, 제3B호, pp. 313-318.
- 김유일, 남보우, 김용환(2007) SPH기법의 계산인자 민감도에 대한 연구, 대한조선학회논문집, 대한조선학회, 제44권, 제4호, pp. 398-407.
- 서송원, 이재훈, 민옥기(2005) 임의 형상의 강체면 탄소성 접촉 해석을 위한 SPH 알고리즘, 대한기계학회논문집 A권, 대한기계학회, 제29권 제1호, pp. 30-37.
- 윤성기, 이상호(2003) 무요소법의 이론과 적용, 제28-2회 전산구조공학회 기술강습회, 한국전산구조공학회.
- 이재훈, 서송원, 민옥기(2004) SPH기법을 이용한 복합 적층판의 초고속 충돌 해석, 2004년도 대한기계학회 추계학술대회 논문집, 대한기계학회, pp. 331-336.
- Atluri, S.N. and Zhu, T. (2000) A new meshless local petrov galerkin (MLPG) approach in computational mechanics, Computational Mechanics, Vol. 22, pp. 117-127.
- Belytschko, T., Lu, Y.Y., and Gu, L. (1994) Element-free galerkin methods, International Journal for Numerical methods in Engineering, Vol. 37, pp. 229-256. https://doi.org/10.1002/nme.1620370205
- Belytschko, T. and Xiao, S. (2002) Stability analysis of particle methods with corrected derivatives, Computers and Mathematics with Applications, Vol. 43, pp. 329-350. https://doi.org/10.1016/S0898-1221(01)00290-5
- Bonet, J. and Kulasegaram, S. (2000) Correction and stabilization of smoothed particle hydrodynamics methods with applications in metal forming simulations, Internat. J. Numer. Methods Engrg, Vol. 47, pp. 1189-1214. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1189::AID-NME830>3.0.CO;2-I
- Bonet, J., Kulasegaram, S., Rodriguez-Paz, M.X., and Profit, M. (2004) Variational formulation for the smoothe particle hydrodynamics(SPH) simulation of fluid and solid problems, Comput. Methods Appl. Mech. Engrg, Vol. 193, pp. 1245-1256. https://doi.org/10.1016/j.cma.2003.12.018
- Century Dynamics (2004) AUTODYN User's manual
- Chen, J.K., Beraun, J.E., and Jih, C.J. (1999) An improvement for tensile instability in smoothed particle hydrodynamics, Comput. Mech, Vol. 23, pp. 279-287. https://doi.org/10.1007/s004660050409
- Dilts, G.A. (1999) Moving least squares hydrodynamics: Consistency and stability, Internat. J. Numer. Methods Engrg, Vol. 44, pp. 1115-1155. https://doi.org/10.1002/(SICI)1097-0207(19990320)44:8<1115::AID-NME547>3.0.CO;2-L
- Dyka, C.T., Randles, P.W., and Ingel, R.P. (1997) Stress points for tension instability in SPH, Internat. J. Numer. Methods Engrg, Vol. 40, pp. 2325-2341. https://doi.org/10.1002/(SICI)1097-0207(19970715)40:13<2325::AID-NME161>3.0.CO;2-8
- Engelmann, B.E. (1991) NIKE2D User's Manual
- Gingold, R.A. and Monaghan, J.J. (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices Royal Astronomical Society, Vol. 181, pp. 375-389. https://doi.org/10.1093/mnras/181.3.375
- Gray, J.P., Monaghan, J.J., and Swift, R.P. (2001) SPH elastic dynamics, Comput. Methods Appl. Mech. Engrg, Vol. 190, pp. 6641- 6662. https://doi.org/10.1016/S0045-7825(01)00254-7
- Johnson, G.R. and Holmquist, T.J. (1988) Evaluation of cylinderimpact test data for constitutive model constants, J. Appl. Phys. Vol. 64, No. 8, pp. 3901-3910. https://doi.org/10.1063/1.341344
- Libersky, L.D. and Randles, P.W. (1998) Boundary conditions in a meshless staggered particle code, Technical Report LA-UR-98- 590, Los Alamos National Laboratory, Los Alamos, NM.
- Liu W. L., Jun S., Li S., Adee J., and Belytschko T. (1995) Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, Vol. 38, pp. 1655-1679. https://doi.org/10.1002/nme.1620381005
- Lucy, L.B. (1977) A numerical approach to the testing of fusion process, Astronomical Journal, Vol. 88, pp. 1013-1024.
- Maker, B.N., (1995) NIKE3D User's Manual.
- Monaghan, J.J. (2000) SPH without tensile instability, J. Comput. Phys. Vol. 159, pp. 290-311. https://doi.org/10.1006/jcph.2000.6439
- Morris, J.P., Fox, P.J., and Zhu, Y. (1997) Modeling low reynolds number incompressible flows using SPH, J. Comput. Phys. Vol. 136, pp. 214-226. https://doi.org/10.1006/jcph.1997.5776
- Phillips, G. and Monaghan, J.J. (1985) A numerical method for three-dimensional simulations of collapsing, isothermal, magnetic gas clouds, Mon. Not. R. Astron. Soc, Vol. 216, pp. 883- 895. https://doi.org/10.1093/mnras/216.4.883
- Randles, P.W. and Libersky, L.D. (2000) Normalized SPH with stress pointss, Int. J. Numer. Meth. Engng, Vol. 48, pp. 1445- 1462. https://doi.org/10.1002/1097-0207(20000810)48:10<1445::AID-NME831>3.0.CO;2-9
- Schussler, M. and Schmitt. D. (1981) Comments on smoothed particle hydrodynamics, Astron. Astrophys, Vol. 97, pp. 373-379.
- Sigalotti, L.D.G., Lopez, H., Donoso, A., Sira, E., and Klapp, J. (2006) A shock-capturing SPH scheme based on adaptive kernel estimation, J. Comput. Phys, Vol. 212, pp. 124-149. https://doi.org/10.1016/j.jcp.2005.06.016
- Sigalotti, L.D.G. and Lopez, H. (2008) Adaptive kernel estimation and SPH tensile instability, I. J. Computers and Mathematics with applications, Vol. 55, pp. 23-50. https://doi.org/10.1016/j.camwa.2007.03.007
- Swegle, J.W., SPH in Tension, Memo. (Sandia National Laborarories, 1992).
- Swegle, J.W., Hicks, D.L., and Attaway, S.W. (1995) Smoothed particle hydrodynamics stability analysis, J. Comput. Phys, Vol. 116, pp. 123-134. https://doi.org/10.1006/jcph.1995.1010
- Vidal, Y., Bonet, J., and Huerta1, A. (2007) Stabilized updated Lagrangian corrected SPH for explicit dynamic problems, Int. J. Numer. Meth. Engng, Vol. 69, pp. 2687-2710. https://doi.org/10.1002/nme.1859