DOI QR코드

DOI QR Code

Numerical Analysis of Steel-strengthened Concrete Panels Exposed to Effects of Blast Wave and Fragment Impact Load Using Multi-solver Coupling

폭풍파 및 파편 충돌에 대한 강판보강 콘크리트 패널의 복합적 수치해석

  • 윤성환 (한양대학교 건설환경공학과) ;
  • 박대효 (한양대학교 건설환경공학과)
  • Received : 2010.09.10
  • Accepted : 2010.11.16
  • Published : 2011.02.28

Abstract

The impact damage behavior of steel-strengthened concrete panels exposed to explosive loading is investigated. Since real explosion experiments require the vast costs to facilities as well as the blast and impact damage mechanisms are too complicated, numerical analysis has lately become a subject of special attention. However, for engineering problems involving blast wave and fragment impact, there is no single numerical method that is appropriate to the various problems. In order to evaluate the retrofit performance of a steel-strengthened concrete panel subject to blast wave and fragment impact loading, an explicit analysis program, AUTODYN is used in this work. The multi-solver coupling methods such as Euler-Lagrange and SPH-Lagrange coupling method in order to improve efficiency and accuracy of numerical analysis is implemented. The simplified and idealized two dimensional and axisymmetric models are used in order to obtain a reasonable computation running time. As a result of the analysis, concrete panels subject to either blast wave or fragment impact loading without the steel plate are shown the scabbing and perforation. The perforation can be prevented by concrete panels reinforced with steel plate. The numerical results show good agreement with the results of the experiments.

본 논문에서는 폭발에 의한 폭풍파 및 파편 충돌하중을 받는 강판보강 콘크리트 패널의 충돌손상거동 수치해석이 수행된다. 폭발로 인해 발생되는 순간 동역학적인 충돌손상 메커니즘은 매우 복잡하며, 이에 대한 실험적 연구 또한 막대한 비용과 시설이 요구되기 때문에 explicit 유한요소해석 프로그램인 AUTODYN을 이용하여 수치적 연구가 수행된다. 그러나, 단일의 수치해석기법을 적용하여 폭풍파 및 파편의 충돌에 의한 손상거동을 명확히 모사하기에는 한계가 있다. 따라서 수치해석의 정확성 및 효율성을 높이기 위해 Euler-Lagrange, SPH(smoothed particle hydrodynamics)-Lagrange 기법을 커플링하는 복합적 수치해석(multi-solver coupling) 기법이 제안된다. 제안된 해석기법과 2차원 축대칭 모델을 적용하여 강판보강 유무에 따른 콘크리트 패널의 충돌손상거동 해석이 수행된다. 수치해석 결과 무보강 콘크리트 패널의 경우, 파편 충돌에 의해 파쇄 및 관통이 발생되었고 강판보강 콘크리트 패널의 경우 강도 및 강성의 증가로 인해 관통이 발생되지 않았고 최대처짐 및 파편억제효과가 나타났다. 해석결과는 기존의 실험결과와 비교하여 잘 일치되었고 제안된 복합적 수치해석 기법은 충돌손상에 대한 보강성능을 평가하는데 효과적으로 적용가능하다.

Keywords

References

  1. ASCE (1999) Structural Design for Physical Security, State of the Practice, pp. 4-1-4-48.
  2. Bulson, P.S. (1997) Explosive Loading of Engineering Structrures, E&FNSPON.
  3. Century Dynamics (2007) AUTODYN User Manuals, Version 11.
  4. Gebbekn, N. and Ruppert, M. (1999) On the safety and reliability of high dynamic hydrocode simulations, International Journal for Numerical Methods in Engineering, Vol. 46, pp. 839-851. https://doi.org/10.1002/(SICI)1097-0207(19991030)46:6<839::AID-NME728>3.0.CO;2-R
  5. Heinstein, M.W., Mello, F.J., Attaway, S.W., and Laursen, T.A. (2000) Contact-impact modeling in explicit transient dynamics, Computer Methods in Applied Mechanics and Engineering, Vol. 187, pp. 621-640. https://doi.org/10.1016/S0045-7825(99)00342-4
  6. Johnson, G.R. and Cook W.H. (1983) A Constitutive modeling and data for metals subjected to large strain rates and high temperatures, Proceedings of 7th international symposium on ballistics, pp. 541-577.
  7. Leppanen, J. (2004) Concrete Structures Subjected to Fragment Impacts, Department of Structural Engineering Concrete Structures, Chalmers university of technology, Goteborg, Sweden.
  8. Liu, G.R. and Liu, M.B. (2005) Smoothed Particle Hydrodynamicsa meshfree particle method, WorldScientific.
  9. Meuric, O.F.J., Sheridan, J., Ocarroll, C., Clegg, R.A. and Hayhurst, C.J. (2001) Numerical Prediction of Penetration into Reinforced Concrete using a Combined Grid based and Meshless lagrange approach, 10th Int. Symp., On Interaction of the Effects of Munitions with Structures, California.
  10. Morishita, M., Tanaka, H., Ando, T. and Hagiya, H. (2004) Effects of concrete strength and reinforcing clear distance on the damage of reinforced concrete slabs subjected to contact detonations, Concrete Research and Technology, Vol. 15, No. 2, pp. 89-98. https://doi.org/10.3151/crt1990.15.2_89
  11. Ngo, T., Mendis, P., Gupta, A., and Ramsay, J. (2007) Blast loading and blast effects on structures-An overview, EJSE Special Issue: Loading on structures, pp. 76-91.
  12. Nystrom, U. (2008) Concrete structures subjected to blast and fragment impacts, Department of Structural Engineering Concrete Structures, Chalmers university of technology, Goteborg, Sweden.
  13. Pope, D.J. and Tyas, A. (2002) Response prediction of steel reinforced concrete panels exposed to near field explosive loading using simplified hydrocode models, 1st Asia-Pacific Conference on Protection of Structures against Hazards, Singapore.
  14. Quan, X., Binbaum, N.K. Cowler, M.S., Gerber, B.I., Clegg, R.A., and Hayhurst, C.J. (2003) Numerical simulation of structure deformation under shock and impact loads using a coupled multi-solver approach, 5th Asia-Pacific Conference on Shock and Impact Load on Structures, China.
  15. Smith, P.D. and Hetherington, J.G. (1994) Blast and Ballistic Loading of Structures, Butterworth-Heinemann, Oxford.
  16. TM5-1300/AFM 88-22/NAVFAC P-397 (1990) Structures to Resist the effect of Accidental Explosions, Joint Departments of the Army, Air Force and Navy Washington, DC.
  17. von Neumann, J. and Richtmyer, R.D. (1950) A method for the numerical calculation of hydrodynamic shock, Journal of Applied Physics, Vol. 21, pp. 232-237. https://doi.org/10.1063/1.1699639