DOI QR코드

DOI QR Code

Stability Analysis of Shear-Flexible and Semi-Rigid Plane Frames

전단변형효과를 고려한 부분강절 평면뼈대구조의 안정성 해석

  • 민병철 (인덕대학 토목환경설계공학과) ;
  • 민동주 (성균관대학교 사회환경시스템공학과) ;
  • 정명락 (성균관대학교 사회환경시스템공학과) ;
  • 김문영 (성균관대학교 사회환경시스템공학과)
  • Received : 2010.11.25
  • Accepted : 2011.01.13
  • Published : 2011.02.28

Abstract

Generally the connection of structural members is assumed as hinge, rigid and semi-rigid connections. The exact tangent stiffness matrix of a semi-rigid frame element is newly derived using the stability functions considering shear deformations. Also, linearized elastic- and geometric-stiffness matrices of shear deformable semi-rigid frame are newly proposed. For the exact stiffness matrix, an accurate displacement field is introduced by equilibrium equation for beam-column under the bending and the axial forces. Also, stability functions considering sway deformation and force-displacement relations with elastic rotational spring on ends are defined. In order to illustrate the accuracy of this study, various numerical examples are presented and compared with other researcher's results. Lastly, shear deformation and semi-rigid effects on buckling behaviors of structure are parametrically investigated.

구조부재의 연결은 강절(rigid), 활절(hinge) 그리고 부재 간의 상대적인 회전이 허용되는 부분강절(semi-rigid)로 구분될 수 있다. 본 연구에서는 부분강절을 탄성회전스프링으로 가정하여 부재 단부에 적용시킨 평면 뼈대구조에 대하여 전단변형을 고려한 엄밀한 접선강도행렬을 유도하고 이를 다시 탄성강도행렬과 기하학적 강도행렬로 분리?유도함으로써 부분강절을 갖는 평면 뼈대구조물의 안정성해석을 위한 일반화된 해석방법을 제시하고자 한다. 이를 위하여, 보-기둥부재의 좌굴조건을 만족시키는 처짐함수로부터 안정함수(stability function)를 유도하고, 횡변위(sway)를 고려한 힘-변위관계와 적합조건을 고려하여 정확한 접선강도행렬을 제시하였다. 본 연구의 타당성을 입증하고 부분강절 뼈대구조의 전단거동 특성을 파악하기 위하여, 다양한 수치해석 예제에 대해 타 연구자 해석 결과와 본 연구의 안정성 해석결과를 비교하여 제시함으로서 전단변형과 부분강절이 구조물의 좌굴강도에 미치는 영향을 조사한다.

Keywords

References

  1. 민병철, 경용수, 김문영(2008) 부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발, 한국강구조학회논문집, 한국강구조학회, 제20권, 1호, pp. 81-92.
  2. Banerjee, J.R. and Williams, F.W. (1994) The effect of shear deformation on the critical bukling of columns, J. Sound and Vibration, Vol. 174, No. 5, pp. 145-168. https://doi.org/10.1006/jsvi.1994.1268
  3. Bathe, K. (1993) Finite element methods, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 110-113.
  4. Bridge, R.Q. and Fraser, D.J. (1987) Improved G-factor method for evaluating effective lengths of Columns, J. Struct. Eng. ASCE, Vol. 113, pp. 1341-1356. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:6(1341)
  5. Chen, W.F. and Lui, E.M. (1987) Structural Stability, Elsvier Science Publishing Co., New York.
  6. Chen, W.F. and Lui, E.M. (1991) Stability Design of Steel Frames, CRC Press, Inc., pp. 235-342.
  7. Connor, J.J. (1976) Analysis of Structural Member Systems, the Ronald Press Company, New York, pp. 585-603.
  8. Essa, H.S. (1976) Stability of columns in unbraced frames, Journal of Structural Engineering, ASCE, Vol. 123, pp. 952-959.
  9. Eurocode 3. (2004) Design of steel structures Part 1.1: General rules for buildings. CEN Brussels 2004, CEN Document EN 1993-1-1.
  10. Kato, S., Mutoh, I., and Shomura, M. (1998) Collapse of semi-rigid jointed reticulated domes with initial geometric imperfections, Journal of Constructional Steel Research, Vol. 48, pp. 145-213. https://doi.org/10.1016/S0143-974X(98)00199-0
  11. Kishi, N., Chen, W.F., and Goto, Y. (1997) Effective length factor of columns in semi-rigid and unbraced frames, Journal of Structural Engineering, ASCE, Vol. 123, No. 3, March, pp. 313-320. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(313)
  12. Li, Q.S. and Mativo, J. (2000) Approximate estimation of the maximum load of semi-rigid steel frames, Journal of Constructional Steel Research, Vol. 54, pp. 213-238. https://doi.org/10.1016/S0143-974X(99)00044-9
  13. LRFD (1999) Load and resistance factor design specification for structural steel buildings. Chicago : American Institute of Steel Construction Inc. USA.
  14. Mageirou, G.E. and Gantes, C.J. (2006) Buckling strength of multistory sway, non-sway and partially-sway frames with semirigid connections, Journal of Constructional Steel Research, Vol. 62, August, pp. 893-905. https://doi.org/10.1016/j.jcsr.2005.11.019
  15. Mao CJ, Chiou YJ, Hsiao PA, Ho MC. (2010) The stiffness estimation of steel semi-rigid beam-column moment connections in a fire, Journal of Constructional Steel Research, Vol. 66, pp. 680-694. https://doi.org/10.1016/j.jcsr.2009.12.002
  16. Oran, C. (1973) Tangent stiffness in space frames, Journal of Structural Division, ASCE, Vol. 99, No. ST6, June, pp. 987-1001.
  17. Ochoa Aristizabal, J.D. (2004) Column stability and minimum lateral bracing : effects of shear deformations, Journal of Engineering Mechanics, ASCE, Vol. 130, pp. 1223-1232. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1223)
  18. Raftoyannis, I.G (2005) The effect of semi-rigid joints and an elastic bracing system on the buckling load of simple rectangular steel frames, Journal of Constructional Steel Research, Vol. 61, pp. 1205-1225. https://doi.org/10.1016/j.jcsr.2005.01.005
  19. Saffan, S.A. (1963) Non-linear behavior of structual plane frames, Journal of Structural Division, ASCE, Vol. 89, No. ST4, August, pp. 557-579.
  20. Sekulovic, M. and Salatic, R. (2001) Nonlinear analysis of frames with flexible connections, Computer & Structures, Vol. 79, pp. 1097-1107. https://doi.org/10.1016/S0045-7949(01)00004-9
  21. Timoshenko, S.P. and Gere, J.M. (1961) Theory of Elastic Stability, McGraw-Hill Book Co.