DOI QR코드

DOI QR Code

JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM II

  • Ki, U-Hang (Department of Mathematics Kyungpook National University) ;
  • Kurihara, Hiroyuki (Department of Liberal Arts and Engineering Sciences Hachinohe National College of Technology)
  • Received : 2010.08.17
  • Published : 2011.11.30

Abstract

Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},\;{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic space when $R_{\xi}{\phi}S=R_{\xi}S{\phi}$ holds on M, where S denotes the Ricci tensor of type (1,1) on M.

Keywords

References

  1. J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic spaces, J. Reine Angew. Math. 395 (1989), 132-141.
  2. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), no. 2, 481-499.
  3. U.-H. Ki and H. Kurihara, Real hypersurfaces with cyclic-parallel structure Jacobi operators in a nonflat complex space form, Bull. Aust. Math. Soc. 81 (2010), no. 2, 260-273. https://doi.org/10.1017/S0004972709000860
  4. U.-H. Ki, H. Kurihara, S. Nagai and R. Takagi, Characterizations of real hypersurfaces of type A in a complex space form in terms of the structure Jacobi operator, Toyama Math. J. 32 (2009), 5-23.
  5. U.-H. Ki, H. Kurihara, and R. Takagi, Jacobi operators along the structure flow on real hypersurfaces in a nonflat complex space form, Tsukuba J. Math. 33 (2009), no. 1, 39-56. https://doi.org/10.21099/tkbjm/1251833206
  6. U.-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32 (1990), 207-221.
  7. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), no. 1, 137-149. https://doi.org/10.1090/S0002-9947-1986-0837803-2
  8. H. Kurihara, The structure Jacobi operator for real hypersurfaces in the complex projective plane and the complex hyperbolic plane, Tsukuba J. Math. 35 (2011), 53-66. https://doi.org/10.21099/tkbjm/1311081448
  9. M. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata 20 (1986), no. 2, 245-261. https://doi.org/10.1007/BF00164402
  10. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364. https://doi.org/10.1090/S0002-9947-1975-0377787-X
  11. M. Ortega, J. D. Perez, and F. G. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math. 36 (2006), no. 5, 1603-1613. https://doi.org/10.1216/rmjm/1181069385
  12. J. D. Perez, F. G. Santos, and Y. J. Suh, Real hypersurfaces in complex projective spaces whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 3, 459-469.
  13. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
  14. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516. https://doi.org/10.2969/jmsj/02740507

Cited by

  1. REAL HYPERSURFACES OF NON-FLAT COMPLEX SPACE FORMS WITH GENERALIZED ξ-PARALLEL JACOBI STRUCTURE OPERATOR vol.58, pp.03, 2016, https://doi.org/10.1017/S0017089515000403