참고문헌
- Q. H. Ansari and J. C. Yao, An existence result for the generalized vector equilibrium, Appl. Math. Lett. 12 (1999), no. 8, 53-56. https://doi.org/10.1016/S0893-9659(99)00121-4
- J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley, New York, 1984.
- M. Bianchi, N. Hadjisavvas, and S. Schaibles, Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl. 92 (1997), no. 3, 527-542. https://doi.org/10.1023/A:1022603406244
- Y. H. Cheng, On the connectedness of the solution set for the weak vector variational inequality, J. Math. Anal. Appl. 260 (2001), no. 1, 1-5. https://doi.org/10.1006/jmaa.2000.7389
- K. Fan, A generalization of Tychonoffs fixed point theorem, Math. Ann. 142 (1961), 305-310. https://doi.org/10.1007/BF01353421
- F. Giannessi, (ed.), Vector Variational Inequilities and Vector Equilibria: Mathematical Theories, Kluwer, Dordrechet, 2000.
- X. H. Gong, Efficiency and Henig efficiency for vector equilibrium problems, J. Optim. Theory Appl. 108 (2001), no. 1, 139-154. https://doi.org/10.1023/A:1026418122905
- X. H. Gong, Connectedness of the solution sets and scalarization for vector equilibrium problems, J. Optim. Theory Appl. 133 (2007), no. 2, 151-161. https://doi.org/10.1007/s10957-007-9196-y
- X. H. Gong and J. C. Yao, Connectedness of the set of efficient solutions for generalized systems, J. Optim. Theory Appl. 138 (2008), no. 2, 189-196. https://doi.org/10.1007/s10957-008-9378-2
- N. Hadjisavvas and S. Schaibles, From scalar to vector equilibrium problems in the quasimonotone case, J. Optim. Theory Appl. 96 (1998), no. 2, 297-309. https://doi.org/10.1023/A:1022666014055
- Y. D. Hu, The efficiency Theory of Multiobjective Programming, Shanghai: Shanghai Science and Technology Press, 1994.
- G. M. Lee, D. S. Kim, B. S. Lee, and N. D. Yun, Vector variational inequality as a tool for studying vector optimization problems, Nonlinear Anal. 34 (1998), no. 5, 745-765. https://doi.org/10.1016/S0362-546X(97)00578-6
- X. J. Long, N. J. Huang, and K. L. Teo, Existence and stability of solutions for generalized strong vector quasi-equilibrium problems, Math. Comput. Modelling 47 (2008), no. 3-4, 445-451. https://doi.org/10.1016/j.mcm.2007.04.013
- D. T. Luc, Theory of Vector Optimization, Lecture Notes in Economics and Mathematics Systems, Vol. 319, Springer-Verlag, New York, 1989.
피인용 문헌
- Existence-stability theorems for strong vector set-valued equilibrium problems in reflexive Banach spaces vol.2015, pp.1, 2015, https://doi.org/10.1186/s13660-015-0760-y
- Feasibility-solvbility theorems for generalized vector equilibrium problem in reflexive banach spaces vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1812-2012-38
- Sensitivity analysis for generalized quasi-variational relation problems in locally G-convex spaces vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1812-2012-158
- Existence conditions for symmetric generalized quasi-variational inclusion problems vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-40