DOI QR코드

DOI QR Code

INTEGRAL DOMAINS WITH A FREE SEMIGROUP OF *-INVERTIBLE INTEGRAL *-IDEALS

  • Received : 2010.07.04
  • Published : 2011.11.30

Abstract

Let * be a star-operation on an integral domain R, and let $\mathfrak{I}_*^+(R)$ be the semigroup of *-invertible integral *-ideals of R. In this article, we introduce the concept of a *-coatom, and we then characterize when $\mathfrak{I}_*^+(R)$ is a free semigroup with a set of free generators consisting of *-coatoms. In particular, we show that $\mathfrak{I}_*^+(R)$ is a free semigroup if and only if R is a Krull domain and each ${\upsilon}$-invertible ${\upsilon}$-ideal is *-invertible. As a corollary, we obtain some characterizations of *-Dedekind domains.

Keywords

References

  1. D. D. Anderson, $\pi$-domains, overrings, and divisorial ideals, Glasgow Math. J. 19 (1978), no. 2, 199-203. https://doi.org/10.1017/S001708950000361X
  2. D. D. Anderson, Star-operation induced by overrings, Comm. Algebra 16 (1988), no. 12, 2535-2553.
  3. D. D. Anderson and D. F. Anderson, Generalized GCD-domains, Comment. Math. Univ. St. Paul. 28 (1980), no. 2, 215-221.
  4. D. D. Anderson and S. Chun, Commutative rings with finitely generated monoids of fractional ideals, J. Algebra 320 (2008), no. 7, 3006-3021. https://doi.org/10.1016/j.jalgebra.2008.06.032
  5. D. D. Anderson, T. Dumitrescu, and M. Zafrullah, Quasi-Schreier domains II, Comm. Algebra 35 (2007), no. 7, 2096-2104. https://doi.org/10.1080/00927870701302107
  6. D. D. Anderson, J. L. Mott, and J. Park, Finitely generated monoids of fractional ideals, Comm. Algebra 21 (1993), no. 2, 615-634. https://doi.org/10.1080/00927879308824584
  7. D. D. Anderson and M. Zafrullah, Integral domains in which nonzero locally principal ideals are invertible, Comm. Algebra 39 (2011), no. 3, 933-941. https://doi.org/10.1080/00927870903529689
  8. D. F. Anderson, H. Kim, and J. Park, Factorable domains, Comm. Algebra 30 (2002), no. 9, 4113-4120. https://doi.org/10.1081/AGB-120013307
  9. A. Bouvier and M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Grece (N.S.) 29 (1988), 45-59.
  10. G. W. Chang and J. Park, Star-invertible ideals of integral domains, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 6 (2003), no. 1, 141-150.
  11. T. Dumitrescu and R. Moldovan, Quasi-Schreier domains, Math. Rep. (Bucur.) 5(55) (2003), no. 2, 121-126.
  12. T. Dumitrescu and M. Zafrullah, t-Schreier domains, Comm. Algebra 39 (2011), no. 3, 808-818. https://doi.org/10.1080/00927871003597642
  13. S. El Baghdadi, M. Fontana, and G. Picozza, Semistar Dedekind domains, J. Pure Appl. Algebra 193 (2004), no. 1-3, 27-60. https://doi.org/10.1016/j.jpaa.2004.03.011
  14. S. Gabelli, On domains with ACC on invertible ideals, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), no. 3, 419-422.
  15. R. Gilmer, Multiplicative Ideal Theory, Queen's University, Kingston, Ontario, 1992.
  16. F. Halter-Koch, Ideal Systems: An Introduction to Multiplicative Ideal Theory, Marcel Dekker, New York, 1998.
  17. B. G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124 (1989), no. 2, 284-299. https://doi.org/10.1016/0021-8693(89)90131-2
  18. H. Kim, M. O. Kim, and Y. S. Park, Some characterizations of Krull monoids, Algebra Colloq. 14 (2007), no. 3, 469-477. https://doi.org/10.1142/S1005386707000429
  19. H. Kim and Y. S. Park, Some characterizations of Krull domains, J. Pure Appl. Algebra 208 (2007), no. 1, 339-344. https://doi.org/10.1016/j.jpaa.2006.01.002
  20. R. B. Treger, Rings with a free semigroup of invertible ideals, Mat. Sb. (N.S.) 89(131) (1972), 100-109.
  21. M. Zafrullah, Putting t-invertibility to use, in Non-Noetherian Commutative Ring Theory, 429-457, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
  22. M. Zafrullah, t-invertibility and Bazzoni-like statements, J. Pure Appl. Algebra 214 (2010), no. 5, 654-657. https://doi.org/10.1016/j.jpaa.2009.07.004