Abstract
The objective of this study is to assess Sejong University River Forecast (SURF) model which consists of a continuous rainfall-runoff model and measured streamflow assimilation using ensemble Kalman filter technique for streamflow forecast on Nakdong river basin. The study area is divided into 43 subbasins. The forecasted streamflows are evaluated at 12 measurement sites during flood season from 2006 to 2007. The forecasted ones are improved due to the impact of the measured streamflows assimilation. In effectiveness indices corresponding to 1~5 h forecast lead times, the accuracy of the forecasted streamflows with the assimilation approach is improved by 46.2~30.1% compared with that using only the rainfall-runoff model. The mean normalized absolute error of forecasted peak flow without and with data assimilation approach in entering 50% of the measured rainfall, respectively, the accuracy of the latter is improved about 40% than that of the former. From these results, SURF model is able to be used as a real-time river forecast model.
본 연구는 연속형 강우-유출모형과 관측유량 자료동화기법으로 앙상블 칼만필터 기법을 연계한 SURF 모형을 낙동강유역에 적용하여 하천유량예측의 적용성을 평가하고자 하는데 그 목적이 있다. 낙동강유역을 43개 소유역으로 구분하고 2006년과 2007년의 홍수기간 동안 12개 평가지점에 대해 유출모의를 수행하였다. 관측유량 자료동화 효과로 인해 예측유량의 정확도가 향상되며 1~5시간의 예측선행시간별 유효성지수를 분석한 결과 자료동화로 인해 46.2~30.1%의 모의유량의 정확도가 개선되는 것으로 나타났다. 또한 관측강우의 50%를 적용하여 자료동화 전 후의 모의 첨두유량에 대한 평균정상절대오차를 비교하였으며 자료동화로 인해 40% 이상의 정확도가 향상됨을 확인하였다. 이상의 결과로부터 SURF 모형은 낙동강유역의 실시간 하천유량예측에 활용될 수 있을 것으로 판단된다.