References
- Kahn, S. E., Prigeon, R. L., McCulloch, D. K., Boyko, E. J., Bergman, R. N., Schwartz, M. W., Neifing, J. L., Ward, W. K., Beard, J. C. and Palmer, J. P. (1993) Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42, 1663-1672. https://doi.org/10.2337/diabetes.42.11.1663
- Bergman, R. N., Phillips, L. S. and Cobelli, C. (1981) Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest. 68, 1456-1467. https://doi.org/10.1172/JCI110398
- Butler, A. E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A. and Butler, P. C. (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102-110. https://doi.org/10.2337/diabetes.52.1.102
- UK Prospective Diabetes Study (UKPDS) Group. (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837-853. https://doi.org/10.1016/S0140-6736(98)07019-6
- Montanya, E., Nacher, V., Biarns, M. and Soler, J. (2000) Linear correlation between beta-cell mass and body weight throughout the lifespan in Lewis rats: role of beta-cell hyperplasia and hypertrophy. Diabetes 49, 1341-1346. https://doi.org/10.2337/diabetes.49.8.1341
- Pospisilik, J. A., Martin, J., Doty, T., Ehses, J. A., Pamir, N., Lynn, F. C., Piteau, S., Demuth, H., McIntosh, C. H. and Pederson, R. A. (2003) Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52, 741-750. https://doi.org/10.2337/diabetes.52.3.741
- Mu, J., Woods, J., Zhou, Y., Roy, R. S., Li, Z., Zycband, E., Feng, Y., Zhu, L., Li, C., Howard, A. D., Moller, D. E., Thornberry, N. A. and Zhang, B. (2006) Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic beta-cell mass and function in a rodent model of type 2 diabetes. Diabetes 55, 1695-1704. https://doi.org/10.2337/db05-1602
- Drucker, D. J. (2003) Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161-171. https://doi.org/10.1210/me.2002-0306
- Nonaka, K., Kakikawa, T., Sato, A., Okuyama, K., Fujimoto, G., Kato, N., Suzuki, H., Hirayama, Y., Ahmed, T., Davies, M. J. and Stein, P. (2008) Efficacy and safety of sitagliptin monotherapy in Japanese patients with type 2 diabetes. Diabetes Res. Clin. Pract. 79, 291-298. https://doi.org/10.1016/j.diabres.2007.08.021
- Raz, I., Hanefeld, M., Xu, L., Caria, C., Williams-Herman, D. and Khatami, H. (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 49, 2564-2571. https://doi.org/10.1007/s00125-006-0416-z
- Higa, M., Zhou, Y. T., Ravazzola, M., Baetens, D., Orci, L. and Unger, R. H. (1999) Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats. Proc. Natl. Acad. Sci. U.S.A. 96, 11513-11518. https://doi.org/10.1073/pnas.96.20.11513
- Finegood, D. T., McArthur, M. D., Kojwang, D., Thomas, M. J., Topp, B. G., Leonard, T. and Buckingham, R. E. (2001) Betacell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 50, 1021-1029. https://doi.org/10.2337/diabetes.50.5.1021
- Campbell, I. W. and Mariz, S. (2007) Beta-cell preservation with thiazolidinediones. Diabetes Res. Clin. Pract. 76, 163-176. https://doi.org/10.1016/j.diabres.2006.08.015
- Chen, H., Charlat, O., Tartaglia, L. A., Woolf, E. A., Weng, X., Ellis, S. J., Lakey, N. D., Culpepper, J., Moore, K. J., Breitbart, R. E., Duyk, G. M., Tepper, R. I. and Morgenstern, J. P. (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491-495. https://doi.org/10.1016/S0092-8674(00)81294-5
- Yoshioka, M., Kayo, T., Ikeda, T. and Koizumi, A. (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46, 887-894. https://doi.org/10.2337/diabetes.46.5.887
- Drucker, D. J. and Nauck, M. A. (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368, 1696-1705. https://doi.org/10.1016/S0140-6736(06)69705-5
- Matveyenko, A. V., Dry, S., Cox, H. I., Moshtaghian, A., Gurlo, T., Galasso, R., Butler, A. E. and Butler, P. C. (2009) Beneficial endocrine but adverse exocrine effects of sitagliptin in the human islet amyloid polypeptide transgenic rat model of type 2 diabetes: interactions with metformin. Diabetes 58, 1604-1615. https://doi.org/10.2337/db09-0058
- Mu, J., Petrov, A., Eiermann, G. J., Woods, J., Zhou, Y., Li, Z., Zycband, E., Feng, Y., Zhu, L., Roy, R. S., Howard, A. D., Li, C., Thornberry, N. A. and Zhang, B. (2009) Inhibition of DPP-4 with sitagliptin improves glycemic control and restores islet cell mass and function in a rodent model of type 2 diabetes. Eur. J. Pharmacol. 623, 148-154. https://doi.org/10.1016/j.ejphar.2009.09.027
- Yki-Jrvinen, H. (2004) Thiazolidinediones. N. Engl. J. Med. 351, 1106-1118. https://doi.org/10.1056/NEJMra041001
- Robertson, R. P., Harmon, J., Tran, P. O., Tanaka, Y. and Takahashi, H. (2003) Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52, 581-587. https://doi.org/10.2337/diabetes.52.3.581
- Saitoh, Y., Chun-ping, C., Noma, K., Ueno, H., Mizuta, M. and Nakazato, M. (2008) Pioglitazone attenuates fatty acid-induced oxidative stress and apoptosis in pancreatic beta-cells. Diabetes Obes. Metab. 10, 564-573. https://doi.org/10.1111/j.1463-1326.2007.00749.x
- Izumi, T., Yokota-Hashimoto, H., Zhao, S., Wang, J., Halban, P. A. and Takeuchi, T. (2003) Dominant negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. Diabetes 52, 409-416. https://doi.org/10.2337/diabetes.52.2.409
- Oyadomari, S., Koizumi, A., Takeda, K., Gotoh, T., Akira, S., Araki, E. and Mori, M. (2002) Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest. 109, 525-532. https://doi.org/10.1172/JCI0214550
- O'Brien, B. A., Huang, Y., Geng, X., Dutz, J. P. and Finegood, D. T. (2002) Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced. Diabetes 51, 2481-2488. https://doi.org/10.2337/diabetes.51.8.2481
- Xu, G., Stoffers, D. A., Habener, J. F. and Bonner-Weir, S. (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48, 2270-2276. https://doi.org/10.2337/diabetes.48.12.2270
- Xu, G., Kaneto, H., Lopez-Avalos, M. D., Weir, G. C. and Bonner-Weir, S. (2006) GLP-1/exendin-4 facilitates beta-cell neogenesis in rat and human pancreatic ducts. Diabetes Res. Clin. Pract. 73, 107-110. https://doi.org/10.1016/j.diabres.2005.11.007
- Kim, S., Winter, K., Nian, C., Tsuneoka, M., Koda, Y. and McIntosh, C. H. (2005) Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J. Biol. Chem. 280, 22297-22307. https://doi.org/10.1074/jbc.M500540200
- Kim, S., Nian, C., Widenmaier, S. and McIntosh, C. H. (2008) Glucose-dependent insulinotropic polypeptide-mediated up-regulation of beta-cell antiapoptotic Bcl-2 gene expression is coordinated by cyclic AMP (cAMP) response element binding protein (CREB) and cAMP-responsive CREB coactivator 2. Mol. Cell. Biol. 28, 1644-1656. https://doi.org/10.1128/MCB.00325-07
- Doyle, M. E. and Egan, J. M. (2007) Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol. Ther. 113, 546-593. https://doi.org/10.1016/j.pharmthera.2006.11.007
- Friedrichsen, B. N., Neubauer, N., Lee, Y. C., Gram, V. K., Blume, N., Petersen, J. S., Nielsen, J. H. and Mldrup, A. (2006) Stimulation of pancreatic beta-cell replication by incretins involves transcriptional induction of cyclin D1 via multiple signalling pathways. J. Endocrinol. 188, 481-492. https://doi.org/10.1677/joe.1.06160
- Han, S. J., Kang, E. S., Hur, K. Y., Kim, H. J., Kim, S. H., Yun, C., Choi, S. E., Ahn, C. W., Cha, B. S., Kang, Y. and Lee, H. C. (2008) Rosiglitazone inhibits early stage of glucolipotoxicity-induced beta-cell apoptosis. Horm. Res. 70, 165-173. https://doi.org/10.1159/000137662
- Rhodes, C. J. (2005) Type 2 diabetes-a matter of beta-cell life and death? Science 307, 380-384. https://doi.org/10.1126/science.1104345
- Bonner-Weir, S., Deery, D., Leahy, J. L. and Weir, G. C. (1989) Compensatory growth of pancreatic beta-cells in adult rats after short-term glucose infusion. Diabetes 38, 49-53. https://doi.org/10.2337/diabetes.38.1.49
- Parsons, J. A., Brelje, T. C. and Sorenson, R. L. (1992) Adaptation of islets of Langerhans to pregnancy: increased islet cell proliferation and insulin secretion correlates with the onset of placental lactogen secretion. Endocrinology 130, 1459-1466. https://doi.org/10.1210/en.130.3.1459
- Kawasaki, F., Matsuda, M., Kanda, Y., Inoue, H. and Kaku, K. (2005) Structural and functional analysis of pancreatic islets preserved by pioglitazone in db/db mice. Am. J. Physiol. Endocrinol. Metab. 288, E510-518. https://doi.org/10.1152/ajpendo.00128.2004
- Lamont, B. J. and Drucker, D. J. (2008) Differential antidiabetic efficacy of incretin agonists versus DPP-4 inhibition in high fat fed mice. Diabetes 57, 190-198. https://doi.org/10.2337/db07-1202
Cited by
- Trigonelline attenuates hepatic complications and molecular alterations in high-fat high-fructose diet-induced insulin resistance in rats vol.95, pp.4, 2017, https://doi.org/10.1139/cjpp-2016-0269
- Cardioprotective effect of concomitant administration of trigonelline and sitagliptin on cardiac biomarkers, lipid levels, electrocardiographic and heamodynamic modulation on cardiomyopathy in diabetic Wistar rats vol.4, pp.4, 2014, https://doi.org/10.1016/j.biomag.2014.07.009
- Novel AGLP-1 albumin fusion protein as a long-lasting agent for type 2 diabetes vol.46, pp.12, 2013, https://doi.org/10.5483/BMBRep.2013.46.12.106
- Antihyperglycemic activity of trigonelline and sitagliptin in nicotinamide-streptozotocin induced diabetes in Wistar rats vol.3, pp.3, 2013, https://doi.org/10.1016/j.biomag.2013.05.006
- Hope and fear for new classes of type 2 diabetes drugs: is there preclinical evidence that incretin-based therapies alter pancreatic morphology? vol.221, pp.1, 2014, https://doi.org/10.1530/JOE-13-0577
- Renoprotective Effects of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin: A Review in Type 2 Diabetes vol.2017, 2017, https://doi.org/10.1155/2017/5164292
- Effect of metformin and pioglitazone on β-catenin and biochemical markers in sitagliptin-induced pancreatitis in diabetic rats vol.35, pp.3, 2015, https://doi.org/10.1007/s13410-014-0278-8
- Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties vol.6, pp.1, 2014, https://doi.org/10.1186/1758-5996-6-42