DOI QR코드

DOI QR Code

고도를 고려한 공간보간기법이 대유역 강우량 산정시 미치는 영향 연구

A Study of Spatial Interpolation Impact on Large Watershed Rainfall Considering Elevation

  • 정혁 (건국대학교 대학원 사회환경시스템공학과) ;
  • 신형진 (건국대학교 대학원 사회환경시스템공학과) ;
  • 박종윤 (건국대학교 대학원 사회환경시스템공학과) ;
  • 정인균 (건국대학교 대학원 사회환경시스템공학과) ;
  • 김성준 (건국대학교 대학원 사회환경시스템공학과)
  • 투고 : 2011.07.25
  • 심사 : 2011.10.17
  • 발행 : 2011.11.30

초록

This study was conducted to identify the effect of lapse rate application according to elevation on the estimation of large scale watershed rainfall. For the Han river basin (26,018 $km^2$), the 11 years (2000-2010) daily rainfall data from 108 AWS (Automatic Weather Station) were collected. Especially, the 11 heavy rain and typhoon events from 2004 to 2009 were selected for trend analysis. The elevation effect by IDW (Inverse Distance Weights) interpolation showed the change up to +62.7 % for 1,200~1,600m elevation band. The effect based on 19 subbasins of WAMIS (Water Resources Management Information System) water resources unit map, the changes of IDW and Thiessen were -8.0 % (Downstream of Han river)~ +19.7 % (Upstream of Namhan river) and -5.7 %~+15.9 % respectively. It showed the increase trend as the elevation increases. For the 11 years rainfall data analysis, the lapse rate effect of IDW and Thiessen showed increase of 9.7 %~15.5 % and 6.6 %~9.6 % respectively.

키워드

참고문헌

  1. Blackmore, S., and M. Moore, 1999. Remedial correction of yield map data. Precision agriculture 1(1): 53-66. https://doi.org/10.1023/A:1009969601387
  2. Cho, H. L., and J. C. Jeong, 2006. Application of spatial interpolation to rainfall data. The Journal of GIS Association of Korea 14(1): 29-41 (in Korean).
  3. Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, jan Curtis, and P. P. Pasteris, 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology 28: 2031-2064. https://doi.org/10.1002/joc.1688
  4. Daly C., R. P. Neilson, and D. L. Phillips, 1993. A statistical-topographical model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33: 140-158.
  5. Franke, R., and G.M. Nielson, 1980. Smooth interpolation of large sets of scattered data. International Journal for Numerical Methods in Engineering 15: 1691-1704. https://doi.org/10.1002/nme.1620151110
  6. Goodale C. L., J. D. Aber, and S. V. Ollinger, 1998. Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Climate Research 10: 35-49. https://doi.org/10.3354/cr010035
  7. Irmak, A., P. Ranade, D. Marx, S. Irmak, K. G. Hubbard, G. Meyer, and D. L. Martin, 2010. Spatial interpolation of climate variables in Nebraska. American Society of Agricultural and Biological Engineers 53(6): 1759-1771.
  8. Landsberg. H. E, 1958. Physical Climatology (2nd ed.). Gray Printing. DuBois. Pennsylvania pp.446.
  9. Lee, H. S., 2010. Comparison and evaluation of root mean square for parameter settings of spatial interpolation method. The Korean Association of Geographic Information Studies 13(3): 29-41 (in Korean).
  10. Lee, J. H., and I. K. Jeon, 1994. A rainfall forecasting medel for the ungaged point of meteorological data. The Journal of the Korean Society of Civil Engineers 14(2): 307-306 (in Korean).
  11. Lee, J. S., J. J. Lee, and B. K. Jeon, 2001. Comparison of the estimation method for mean areal rainfall in the Wi Cheon watershed using GIS. Kumoh National University of Technology 17: 161-177 (in Korean).
  12. Kim, C., 1999. Computation of mean areal precipitation using GIS. The Journal of Honam University 20(2): 861-871 (in Korean).
  13. Naoum, S., and I. K. Tsanis, 2004. Ranking spatial interpolation techniques using a GIS-based DSS. International Journal of Global NEST 6(1): 1-20
  14. Ruelland, D., S. Ardoin-Bardin, G. Billen and E. Servat, 2008. Sensitivity of a lumped and semi-distributed hydrological model to several methods of rainfall interpolation on a large basin in West Africa. Journal of Hydrology 361: 96-117. https://doi.org/10.1016/j.jhydrol.2008.07.049
  15. Sasaki H., and K. Kurihara, 2008. Relationship between precipitation and elevation in the present climate reproduced by the Non-hydrostatic Regional Climate Model. Scientific Online Letters on the Atmosphere 4: 109-112.
  16. Sasaki H., K. Kurihara, I. Takayabu, and T. Uchiyama, 2008. Preliminary experiments of reproducing the present climate using the non-hydrostatic resional climate model, Scientific Online Letters on the Atmosphere 4: 25-28.
  17. Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 ACM National Conference, 517-524.
  18. Shin, S. C., M. K. Kim, M. S. Suh, D. K. Rha, D. H. Jang, C. S. Kim, W. S. Lee, and Y. H. Kim, 2008. Estimation of high resolution gridded precipitation using GIS and PRISM, Atmosphere 18(1): 71-81 (in Korean).
  19. Smith, C. D., 2008. The Relationship between Monthly Precipitation and Elevation in the Alberta Foothills during the Foothills Orographic Precipitation Experiment. Cold Region Atmospheric and Hydrologic Studies 2: 167-185.
  20. Yun, J. I., Y. S. Chun, C. S. Lee, and K. B. Yoo. 1988. Relationship between rainfall distribution and site topography in Cheju Island, Korea. Journal of Atmospheric Research 5(1): 43-49.
  21. Yun, J. I., D. S. Yi, J. Y. Choi, S. I. Cho, E. W. Park, and H. Hwang, 1999. Elevation-corrected spatial interpolation for near-real time generation of meteorological surfaces from point observations. AgroInformatics Journal 1(1): 28-33 (in Korean).

피인용 문헌

  1. Predicting the Potential Habitat, Host Plants, and Geographical Distribution of Pochazia shantungensis (Hemiptera: Ricaniidae) in Korea vol.54, pp.3, 2015, https://doi.org/10.5656/KSAE.2015.06.0.011
  2. Spatial Rainfall Considering Elevation and Estimation of Rain Erosivity Factor R in Revised USLE Using 1 Minute Rainfall Data and Program Development vol.19, pp.4, 2016, https://doi.org/10.11108/kagis.2016.19.4.130