References
- Caironi, M.; Gili, E.; Sakanoue, T.; Cheng, X.; Sirringhaus, H. ACS Nano 2010, 4, 1451. https://doi.org/10.1021/nn9014664
- Sele, C. W.; von Werne, T.; Friend, R. H.; Sirringhaus, H. Adv. Mater. 2005, 17, 997. https://doi.org/10.1002/adma.200401285
- Creagh, L. T.; Mcdonald, M. MRS Bull. 2003, 28, 807. https://doi.org/10.1557/mrs2003.229
- Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123. https://doi.org/10.1126/science.290.5499.2123
- Kraus, R.; Malaquin, L.; Schmid, H.; Riess, W.; Spencer, N. D.; Wolf, H. Nature Nanotech. 2007, 2, 570. https://doi.org/10.1038/nnano.2007.262
- Huang, D.; Liao, F.; Molesa, S.; Redinger, D.; Subramanian, V. J. Electrochem. Soc. 2003, 150, G412. https://doi.org/10.1149/1.1582466
- Ahn, J.-H.; Kim, H.-S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y.; Nuzzo, R. G.; Rogers, J. A. Science 2006, 314, 1754. https://doi.org/10.1126/science.1132394
- Stutzmann, N.; Friend, R. H.; Sirringhaus, H. Science 2003, 299, 1881. https://doi.org/10.1126/science.1081279
- Hou, Z.; Cai, B.; Liu, H.; Xu, D. Carbon 2008, 46, 405. https://doi.org/10.1016/j.carbon.2007.11.053
- Gamerith, S.; Klug, A.; Scheiber, H.; Scherf, U.; Moderegger, E.; List, E. J. W. Adv. Funct. Mater. 2007, 17, 3111. https://doi.org/10.1002/adfm.200600762
- Smith, P. J.; Shin, D.-Y.; Stringer, J. E.; Derby, B.; Reis, N. J. Mater. Sci. 2006, 41, 4153. https://doi.org/10.1007/s10853-006-6653-1
- Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. J. Phys. Chem. C 2008, 112, 1101. https://doi.org/10.1021/jp076981k
- Luechinger, N. A.; Athanassiou, E. K.; Stark, W. J. Nanotechnology 2008, 19, 445201. https://doi.org/10.1088/0957-4484/19/44/445201
- Jeong, S.; Woo, K.; Kim, D.; Lim, S.; Kim, J. S.; Shin, H.; Xia, Y.; Moon, J. Adv. Funct. Mater. 2008, 18, 679. https://doi.org/10.1002/adfm.200700902
- Wu, S.; Ding, X. IEEE Trans. Adv. Pack. 2007, 30, 434. https://doi.org/10.1109/TADVP.2007.898512
- Jang, S.; Seo, Y.; Choi, J.; Kim, T.; Cho, J.; Kim, S.; Kim, D. Scr. Mater. 2010, 62, 258. https://doi.org/10.1016/j.scriptamat.2009.11.011
- Mott, D.; Galkowski, J.; Wang, L.; Luo, J.; Zhong, C. J. Langmuir 2007, 23, 5740. https://doi.org/10.1021/la0635092
Cited by
- Copper film prepared from copper fine particle paste by laser sintering at room temperature: Influences of sintering atmosphere on the morphology and resistivity vol.53, pp.9, 2014, https://doi.org/10.7567/JJAP.53.096501
- Calculating the Threshold Energy of the Pulsed Laser Sintering of Silver and Copper Nanoparticles vol.20, pp.5, 2016, https://doi.org/10.3807/JOSK.2016.20.5.601
- The effect of inkjetted nanoparticles on metal part properties in binder jetting additive manufacturing vol.29, pp.39, 2018, https://doi.org/10.1088/1361-6528/aad0bb
- Design, construction, and performance testing of an isothermal naphthalene heat pipe furnace. vol.85, pp.9, 2011, https://doi.org/10.1063/1.4894526
- Ultrafine Copper Nanoparticles Exhibiting a Powerful Antifungal/Killing Activity Against Corticium Salmonicolor vol.35, pp.9, 2011, https://doi.org/10.5012/bkcs.2014.35.9.2645
- Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor vol.147, pp.None, 2018, https://doi.org/10.1016/j.matdes.2018.03.027
- Ohmic contact formation for inkjet-printed nanoparticle copper inks on highly doped GaAs vol.32, pp.22, 2011, https://doi.org/10.1088/1361-6528/abe902
- Identifying higher oxygenate synthesis sites in Cu catalysts promoted and stabilized by atomic layer deposited Fe2O3 vol.404, pp.None, 2011, https://doi.org/10.1016/j.jcat.2021.09.015