DOI QR코드

DOI QR Code

Anti-inflammatory and PPAR Subtypes Transactivational Activities of Phenolics and Lignans from the Stem Bark of Kalopanax pictus

  • Received : 2011.08.25
  • Accepted : 2011.09.26
  • Published : 2011.11.20

Abstract

A new compound, kalopanaxin F (3), and 11 known compounds (1, 2, 4-12), were isolated from the stem bark of Kalopanax pictus. Their structures were elucidated on the basis of chemical and spectroscopic methods. Five of the compounds (2, 3, 5, 6, and 12) significantly inhibited $TNF{\alpha}$-induced NF-${\kappa}B$ transcriptional activity in HepG2 cells in a dose-dependent manner, with $IC_{50}$ values ranging from 6.2 to 9.1 ${\mu}M$. Furthermore, the transcriptional inhibitory function of these compounds was confirmed based on decreases in COX-2 and iNOS gene expression in HepG2 cells. Compounds 3-7, 9, and 12 significantly activated the transcriptional activity of PPARs dose-dependently, with $EC_{50}$ values ranging from 4.1-$12.7{\mu}M$. Compounds 4 and 5 exhibited $PPAR{\alpha}$, $PPAR{\gamma}$, and $PPAR{\beta}({\delta})$ transactivational activities in a dose-dependent manner, with $EC_{50}$ values of 16.0 and 17.0, 8.7 and 16.5, 26.2 and 26.3 ${\mu}M$, respectively.

Keywords

References

  1. Kim, T. J. Seoul National University Press: Seoul, 1996; Vol. 2, pp 169.
  2. Shao, C. J.; Kasai, R.; Xu, J. D.; Tanaka, O. Chem. Pharm. Bull. 1989, 37, 311. https://doi.org/10.1248/cpb.37.311
  3. Sano, K.; Sanada, S.; Ida, Y.; Shoji, J. Chem. Pharm. Bull. 1991, 39, 865. https://doi.org/10.1248/cpb.39.865
  4. Lee, K.-T.; Sohn, I.-C.; Park, H.-J.; Kim, D.-W.; Jung, G.-O.; Park, K.-Y. Planta Med. 2000, 66, 329. https://doi.org/10.1055/s-2000-8539
  5. Park, H.-J.; Kim, D.-H.; Choi, J.-W.; Park, J.-H.; Han, Y.-N. Arch. Pharm. Res. 1998, 21, 24. https://doi.org/10.1007/BF03216748
  6. Lee, E. B.; Li, D. W.; Hyun, J. E.; Kim, I. H.; Whang, W. K. J. Ethnopharmacol. 2001, 77, 197. https://doi.org/10.1016/S0378-8741(01)00301-4
  7. Pande, V.; Ramos, M. J. Curr. Med. Chem. 2005, 12, 357. https://doi.org/10.2174/0929867053363180
  8. Baldwin, A. S., Jr. J. Clin. Invest. 2001, 107, 3. https://doi.org/10.1172/JCI11891
  9. Berger, J.; Moller, D. E. Annu. Rev. Med. 2002, 53, 409. https://doi.org/10.1146/annurev.med.53.082901.104018
  10. Balint, B. L.; Nagy, L. Endocr. Metab. Immune Disord. Drug Targets 2006, 6, 33. https://doi.org/10.2174/187153006776056620
  11. Barish, G. D.; Narkar, V. A.; Evans, R. M. J. Clin. Invest. 2006, 116, 590. https://doi.org/10.1172/JCI27955
  12. Haluzik, M. M.; Haluzik, M. Physiol. Res. 2006, 55, 115.
  13. Kuroda, M.; Mimaki, Y.; Honda, S.; Tanaka, H.; Yokota, S.; Mae, T. Bioorg. Med. Chem. 2010, 18, 962. https://doi.org/10.1016/j.bmc.2009.11.027
  14. Shearer, B. G.; Billin, A. N. BBA-Mol. Cell. Biol. L. 2007, 1771, 1082.
  15. Wang, Y. L.; Li, Y. J.; Wang, A. M.; He, X.; Liao, S. G.; Lan, Y. Y. J. Asian Nat. Prod. Res. 2010, 12, 765. https://doi.org/10.1080/10286020.2010.503188
  16. Maggi-Capeyron, M. F.; Ceballos, P.; Cristol, J. P.; Delbosc, S.; Le Doucen, C.; Pons, M.; Leger, C. L.; Descomps, B. J. Agric. Food. Chem. 2001, 49, 5646. https://doi.org/10.1021/jf010595x
  17. Ida, I.; Satoh, Y.; Ohtsuka, M.; Nagasao, M.; Shoji, J. Phytochemistry 1994, 35, 209.
  18. Vermes, B.; Seligmann, O.; Wagner, H. Phytochemistry 1991, 30, 3087. https://doi.org/10.1016/S0031-9422(00)98258-X
  19. Deyama, T. Chem. Pharm. Bull. 1983, 31, 2993. https://doi.org/10.1248/cpb.31.2993
  20. Kobayashi, H.; Karasawa, H.; Miyase, T.; Fukushima, S. Chem. Pharm. Bull. 1985, 33, 1452. https://doi.org/10.1248/cpb.33.1452
  21. Wong, H. R.; Menendez, I. Y. Biochem. Biophys. Res. Commun. 1999, 262, 375. https://doi.org/10.1006/bbrc.1999.1207
  22. Pahl, H. L. Oncogene 1999, 18, 6853. https://doi.org/10.1038/sj.onc.1203239
  23. Scudiero, D. A.; Shoemaker, R. H.; Paull, K. D.; Monks, A.; Tierney, S.; Nofziger, T. H.; Currens, M. J.; Seniff, D.; Boyd, M. R. Cancer Res. 1988, 48, 4827.
  24. Kim, K. K.; Park, K. S.; Song, S. B.; Kim, K. E. Mol. Carcinog. 2010, 49, 259.

Cited by

  1. Comparison of Phenolic Acid from Shoots of Aralia elata and Kalopanax pictus Cultivated in Korea Using UPLC-DAD-ESI(+)-QToF/MS vol.37, pp.4, 2018, https://doi.org/10.5338/KJEA.2018.37.4.37
  2. 생물전환을 통한 음나무발효물의 지표성분 설정 및 동시분석법 검증 vol.32, pp.2, 2011, https://doi.org/10.9799/ksfan.2019.32.2.148