DOI QR코드

DOI QR Code

Photovoltaic Behavior of Dye-sensitized Long TiO2 Nanotube Arrays

  • Received : 2011.08.25
  • Accepted : 2011.09.20
  • Published : 2011.11.20

Abstract

Long $TiO_2$ nanotube (NT) arrays, prepared by electrochemical anodization of Ti foils, have been utilized as dye-adsorbing electrodes in dye-sensitized solar cells (DSCs). By anodizing for 1-24 hr and subsequent annealing, highly crystallized and tightly-adhered NT arrays were tailored to 11-150 ${\mu}m$ lengths, ~90 nm innerpore diameter and ~30 nm wall thickness. I-V curves revealed that the photovoltaic conversion efficiency (${\eta}$) was proportional to the NT length up to 36 ${\mu}m$. Beyond this length, the ) was proportional to the NT length up to ${\eta}$ was still steadily increased, though at a much lower rate. For example, an ${\eta}$ of 5.05% at 36 ${\mu}m$ was increased to 6.18% at 150 ${\mu}m$. Transient photoelectron spectroscopic analyses indicated that NT array-based DSCs revealed considerably higher electron diffusion coefficient ($D_e$) and life time (${\tau}_e$) than those with $TiO_2$ nanoparticles (NP). Moreover, the electron diffusion lengths ($L_e$) of the photo-injected electrons were considerably larger than the corresponding NT lengths in all the cases, suggesting that electron transport in NT arrays is highly efficient, regardless of tube length.

Keywords

References

  1. O'Regan, B.; Gratzel, M. Nature 1991, 353, 737. https://doi.org/10.1038/353737a0
  2. Kim, E. Y.; Lee, W. I.; Whang, C. M. Bull. Korean Chem. Soc. 2011, 32, 2671. https://doi.org/10.5012/bkcs.2011.32.8.2671
  3. Gratzel, M. Nature 2001, 414, 338. https://doi.org/10.1038/35104607
  4. Pettersson, H.; Gruszecki, T. Sol. Energy Mater. Sol. Cells 2001, 70, 203. https://doi.org/10.1016/S0927-0248(01)00025-3
  5. O'Regan, B.; Lenzmann, F.; Muis, R.; Wienke, J. Chem. Mater. 2002, 14, 5023.
  6. Varghese, O. K.; Gong, D. W.; Paulose, M.; Grimes, C. A.; Dickey, E. C. J. Mater. Res. 2003, 18, 156. https://doi.org/10.1557/JMR.2003.0022
  7. Zheng, Q.; Zhou, B. X.; Bai, J.; Cai, W. M.; Liao, J. S. Prog. Chem. 2007, 19, 117.
  8. Tsuchiya, H.; Macak, J. M.; Taveira, L.; Balaur, E.; Ghicov, A.; Sirotna, K.; Schmuki, P. Electrochem. Commun. 2005, 7, 576. https://doi.org/10.1016/j.elecom.2005.04.008
  9. Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Angew. Chem. Int. Ed. 2005, 44, 7463. https://doi.org/10.1002/anie.200502781
  10. Mor, G. K.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Adv. Funct. Mater. 2005, 15, 1291. https://doi.org/10.1002/adfm.200500096
  11. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2006, 6, 215. https://doi.org/10.1021/nl052099j
  12. Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69. https://doi.org/10.1021/nl062000o
  13. Zhu, K.; Vinzant, T. B.; Neale, N. R.; Frank, A. J. Nano Lett. 2007, 7, 3739. https://doi.org/10.1021/nl072145a
  14. Wang, Q.; Zhu, K.; Neale, N. R.; Frank, A. J. Nano Lett. 2009, 9, 806. https://doi.org/10.1021/nl803513w
  15. Jennings, J. R.; Ghicov, A.; Peter, L. M.; Schmuki, P.; Walker, A. B. J. Am. Chem. Soc. 2008, 130, 13364. https://doi.org/10.1021/ja804852z
  16. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nanotechnology 2007, 18, 065707. https://doi.org/10.1088/0957-4484/18/6/065707
  17. Chen, C.-C.; Chung, H.-W.; Chen, C.-H.; Lu, H.-P.; Lan, C.-M.; Chen, S.-F.; Luo, L.; Hung, C.-S.; Diau, E. W.-G. J. Phys. Chem. C 2008, 112, 19151. https://doi.org/10.1021/jp806281r
  18. Li, L.-L.; Tsai, C.-Y.; Wu, H.-P.; Chen, C.-C.; Diau, E. W.-G. J. Mater. Chem. 2010, 20, 2753. https://doi.org/10.1039/b922003h
  19. Shankar, K.; Bandara, J.; Paulose, M.; Weitasch, H.; Varghese, O. K.; Mor, G. K.; LaTempa, T. J.; Thelakkat, M.; Grimes, C. A. Nano Lett. 2008, 8, 1654. https://doi.org/10.1021/nl080421v
  20. Kuang, D.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.; Zakeeruddin, S. M.; Gratzel, M. ACS Nano. 2008, 2, 1113. https://doi.org/10.1021/nn800174y
  21. Ito, S.; Ha, M. C.; Rothenberger, G.; Liska, P.; Comte, P.; Zakeeruddin, S. M.; Pechy, P.; Nazeeruddin, M. K.; Gratzel, M. Chem. Commun. 2006, 4004.
  22. Paulose, M.; Prakasam, H. E.; Varghese, O. K.; Peng, L.; Popat, K. C.; Mor, G. K.; Desai, T. A.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 14992. https://doi.org/10.1021/jp075258r
  23. Varghese, O. K.; Gong, D.; Paulose, M.; Ong, K. G.; Dickey, E. C.; Grimes, C. A. Adv. Mater. 2003, 15, 624. https://doi.org/10.1002/adma.200304586
  24. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2005, 5, 191. https://doi.org/10.1021/nl048301k
  25. Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Pishko, M. V.; Grimes, C. A. J. Mater. Res. 2004, 19, 628. https://doi.org/10.1557/jmr.2004.19.2.628
  26. Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 7235. https://doi.org/10.1021/jp070273h
  27. Kim, D.; Ghicov, A.; Schmuki, P. Electrochem. Commun. 2008, 10, 1835. https://doi.org/10.1016/j.elecom.2008.09.029
  28. Chen, C. C.; Jehng, W. D.; Li, L.-L.; Diau, E. W.-G. J. Electrochem. Soc. 2009, 156, C304. https://doi.org/10.1149/1.3153288
  29. Park, J. H.; Lee, T.-W.; Kang, M. G. Chem. Commun. 2008, 2867.
  30. Chen Q.; Xu, D. J. Phys. Chem. C 2009, 113, 6310. https://doi.org/10.1021/jp900336e
  31. Tao, J.; Zhao, J.; Tang, C.; Kang, Y.; Li, Y. New J. Chem. 2008, 32, 2164. https://doi.org/10.1039/b808719a
  32. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nanotechnology 2007, 18, 065707. https://doi.org/10.1088/0957-4484/18/6/065707
  33. Nakade, S.; Kanzaki, T.; Wada, Y.; Yanagida, S. Langmuir 2005, 21, 10803. https://doi.org/10.1021/la051257j
  34. Ahn, K. S.; Kang, M. S.; Lee, J. K.; Shin, B. C.; Lee, J. W. Appl. Phys. Lett. 2006, 89, 13103. https://doi.org/10.1063/1.2218831
  35. Kang, S.H.; Choi, S.-H.; Kang, M.-S.; Kim, J.-Y.; Kim, H.-S.; Hyeon, T.; Sung, Y.-E. Adv. Mater. 2008, 20, 54. https://doi.org/10.1002/adma.200701819
  36. Ahn, K.-S.; Kang, M.-S.; Lee, J.-W.; Kang, Y. S. J. Appl. Phys. 2007, 101, 84312. https://doi.org/10.1063/1.2721976
  37. Kruger, J.; Plass, R.; Gratzel, M.; Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2003, 107, 7536. https://doi.org/10.1021/jp0348777
  38. Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. J. Phys. Chem. B 2006, 110, 16179. https://doi.org/10.1021/jp064020k
  39. Zhu, K.; Vinzant, T. B.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 3739. https://doi.org/10.1021/nl072145a
  40. Nakade, S.; Kanzaki, T.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S. J. Phys. Chem. B 2005, 109, 3480. https://doi.org/10.1021/jp0460036
  41. Gao, F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M. Chem. Commun. 2008, 2635.

Cited by

  1. Improved performance of anodic titanium oxide nanotube arrays synthesized by sonoelectrochemical anodization method for dye-sensitized solar cells vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0925-2
  2. Effect of Ultrathin Al2O3 Layer on TiO2 Surface in CdS/CdSe Co-Sensitized Quantum Dot Solar Cells vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.411
  3. Anodic Ag/TiO2 nanotube array formation in NaOH/fluoride/ethylene glycol electrolyte as a photoanode for dye-sensitized solar cells vol.27, pp.35, 2011, https://doi.org/10.1088/0957-4484/27/35/355605