DOI QR코드

DOI QR Code

A Novel Approach to Controlling CaCO3 Crystalline Assembly by Changing the Concentration of Poly(aspartic acid)

  • Zhou, Hongjian (Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Gao, Yanmin (School of Material Science and Engineering, Jiangsu University of Science and Technology) ;
  • Hwang, Sun-Gu (Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Lee, Dong-Yun (Department of Nanofusion Engineering, College of Nanoscience and Nanotechnology, Pusan National University) ;
  • Park, Jung-Youn (Department of Biotechnology Research, National Fisheries Research and Development Institute) ;
  • Lee, Jae-Beom (Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University)
  • Received : 2011.08.23
  • Accepted : 2011.09.20
  • Published : 2011.11.20

Abstract

$CaCO_3$ crystalline structures having novel assemblies were in situ fabricated as analogs of naturally occurring proteins and polysaccharides for biomineralization. The calcite crystal was mineralized in a poly(vinyl alcohol)-$Ca^{2+}$ complex film immersed in a $Na_2CO_3$ solution containing poly(aspartic acid). The morphology and size of the $CaCO_3$ crystals were tuned by varying the concentration of poly(aspartic acid). The mechanisms of their nucleation orientation and formation were investigated experimentally and through molecular dynamics (MD) simulations in order to obtain a better understanding of the interactions between the polymers and the crystal at the molecular level. Both the MD results and experimental results indicate that the interaction between PVA and calcite mainly depends on the concentration of the polymer. The novel approach proposed herein for the fabrication of inorganic crystalline assembly structures can be used to fabricate precise crystalline structures.

Keywords

References

  1. An, X.; Cao, C. The Journal of Physical Chemistry C 2008, 112, 15844-15849. https://doi.org/10.1021/jp804848q
  2. Li, H.; Estroff, L. A. J. Am. Chem. Soc. 2007, 129, 5480-5483. https://doi.org/10.1021/ja067901d
  3. Hou, W. T.; Feng, Q. L. Crystal Growth & Design 2006, 6, 1086- 1090. https://doi.org/10.1021/cg0504861
  4. Mann, S.; Webb, J.; Williams, R. J. P. Biomineralization: Chemical and Biochemical Perspectives; John Wiley & Sons: 1989.
  5. Sommerdijk, N. A. J. M.; With, G. Chemical Reviews 2008, 108, 4499-4550. https://doi.org/10.1021/cr078259o
  6. Arias, J. L.; Fernandez, M. S. Chemical Reviews 2008, 108, 4475- 4482. https://doi.org/10.1021/cr078269p
  7. Qiao, L.; Feng, Q.; Lu, S. Crystal Growth and Design 2008, 8, 1509-1514. https://doi.org/10.1021/cg700659u
  8. Naka, K.; Chujo, Y. Chemistry of Materials 2001, 13, 3245-3259. https://doi.org/10.1021/cm011035g
  9. Lowenstam, H. A.; Weiner, S. On Biomineralization; Oxford University Press: USA, 1989.
  10. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press: USA, 2001.
  11. Baeuerlein, E. Biomineralization: Progress in Biology, Molecular Biology and Application; Vch Verlagsgesellschaft Mbh: 2004.
  12. Yu, S. H. Biomineralization II 2007, 79-118.
  13. Yang, H.; Yao, W.; Yang, L.; Ma, X.; Wang, H.; Ye, F.; Wong, K. Journal of Crystal Growth 2009, 311, 2682-2688. https://doi.org/10.1016/j.jcrysgro.2009.02.049
  14. Dzakula, B.; Brecevic; Falini, G.; Kralj, D. Crystal Growth and Design 2009, 9, 2425-2434. https://doi.org/10.1021/cg801338b
  15. Kotachi, A.; Miura, T.; Imai, H. Crystal Growth & Design 2006, 6, 1636-1641. https://doi.org/10.1021/cg050528l
  16. Ajikumar, P. K.; Lakshminarayanan, R.; Valiyaveettil, S. Crystal Growth & Design 2004, 4, 331-335. https://doi.org/10.1021/cg034128e
  17. Naka, K. Biomineralization II 2007, 119-154.
  18. Naka, K.; Huang, S. C.; Chujo, Y. Langmuir 2006, 22, 7760-7767. https://doi.org/10.1021/la060874k
  19. An, X.; Cao, C. The Journal of Physical Chemistry C 2008, 16, 6526-6530.
  20. Balz, M.; Barriau, E.; Istratov, V.; Frey, H.; Tremel, W. Langmuir 2005, 21, 3987-3991. https://doi.org/10.1021/la047977s
  21. Jin, F. L.; Park, S. J. Bull. Korean Chem. Soc. 2009, 30, 335.
  22. Cheng, C.; Shao, Z.; Vollrath, F. Advanced Functional Materials 2008, 18, 2172-2179. https://doi.org/10.1002/adfm.200701130
  23. Schuth, F. Chemistry of Materials 2001, 13, 3184-3195. https://doi.org/10.1021/cm011030j
  24. Li, W.; Wu, P. CrystEngComm. 2009, 11, 2466-2474. https://doi.org/10.1039/b901580a
  25. Wang, T.; Leng, B.; Che, R.; Shao, Z. Langmuir 2010, 16, 13385- 133892.
  26. Gebauer, D.; Colfen, H.; Verch, A.; Antonietti, M. Advanced Materials 2009, 21, 435-439. https://doi.org/10.1002/adma.200801614
  27. Gebauer, D.; Volkel, A.; Colfen, H. Science 2008, 322, 1819-1822. https://doi.org/10.1126/science.1164271
  28. Yu, S. H.; Colfen, H.; Hartmann, J.; Antonietti, M. Advanced Functional Materials 2002, 12, 541-545. https://doi.org/10.1002/1616-3028(20020805)12:8<541::AID-ADFM541>3.0.CO;2-3
  29. Colfen, H.; Antonietti, M. Langmuir 1998, 14, 582-589. https://doi.org/10.1021/la970765t
  30. Colfen, H.; Qi, L. Chem. Eur. J. 2001, 7, 106-116. https://doi.org/10.1002/1521-3765(20010105)7:1<106::AID-CHEM106>3.0.CO;2-D
  31. Sun, H. J. Phys. Chem. B 1998, 102, 7338-7364. https://doi.org/10.1021/jp980939v
  32. Pokroy, B.; Kapon, M.; Marin, F.; Adir, N.; Zolotoyabko, E. Proceedings of the National Academy of Sciences 2007, 104, 7337-7341. https://doi.org/10.1073/pnas.0608584104
  33. Feng, Q. L.; Li, H. B.; Pu, G.; Zhang, D. M.; Cui, F. Z.; Li, H. D.; Kim, T. N. Journal of Materials Science 2000, 35, 3337-3340. https://doi.org/10.1023/A:1004843900161
  34. Albeck, S.; Aizenberg, J.; Addadi, L.; Weiner, S. Journal of the American Chemical Society 1993, 115, 11691-11697. https://doi.org/10.1021/ja00078a005
  35. Aizenberg, J.; Black, A. J.; Whitesides, G. M. Journal of the American Chemical Society 1999, 121, 4500-4509. https://doi.org/10.1021/ja984254k
  36. Cullity, B. D.; Stock, S. R. Elements of X-ray Diffraction, Prentice Hall Upper Saddle River, NJ: 2001.
  37. Mann, S. Nature 1988, 332, 119-124. https://doi.org/10.1038/332119a0
  38. Gower, L. A.; Tirrell, D. A. Journal of Crystal Growth 1998, 191, 153-160. https://doi.org/10.1016/S0022-0248(98)00002-5
  39. Falini, G. International Journal of Inorganic Materials 2000, 2, 455-461. https://doi.org/10.1016/S1466-6049(00)00040-4
  40. Hou, W. T.; Feng, Q. L. Journal of Crystal Growth 2003, 258, 402-408. https://doi.org/10.1016/S0022-0248(03)01551-3
  41. Zaremba, C. M.; Belcher, A. M.; Fritz, M.; Li, Y.; Mann, S.; Hansma, P. K.; Morse, D. E.; Speck, J. S.; Stucky, G. D. Chem. Mater 1996, 8, 679-690. https://doi.org/10.1021/cm9503285
  42. Yuan, P. Q.; Kong, N.; Cheng, Z. M.; Semiat, R. Desalination 2009, 238, 246-256. https://doi.org/10.1016/j.desal.2008.02.016
  43. Teng, H. H.; Dove, P. M.; De Yoreo, J. J. Geochimica et Cosmochimica Acta 2000, 64, 2255-2266. https://doi.org/10.1016/S0016-7037(00)00341-0
  44. Addadi, L.; Moradian, J.; Shay, E.; Maroudas, N. G.; Weiner, S. Proceedings of the National Academy of Sciences of the United States of America 1987, 84, 2732-2376. https://doi.org/10.1073/pnas.84.9.2732
  45. Gotliv, B. A.; Addadi, L.; Weiner, S. ChemBioChem. 2003, 4, 522-529. https://doi.org/10.1002/cbic.200200548
  46. Gotliv, B. A.; Kessler, N.; Sumerel, J. L.; Morse, D. E.; Tuross, N.; Addadi, L.; Weiner, S. ChemBioChem. 2005, 6, 304-314. https://doi.org/10.1002/cbic.200400221
  47. Hernandez-Hernandez, A.; Rodriguez-Navarro, A. B.; Gomez- Morales, J.; Jimenez-Lopez, C.; Nys, Y.; Garcia-Ruiz, J. M. Crystal Growth and Design 2008, 8, 1495-1502. https://doi.org/10.1021/cg070512q
  48. Bhowmik, R.; Katti, K. S.; Katti, D. Polymer 2007, 48, 664-674. https://doi.org/10.1016/j.polymer.2006.11.015
  49. Rybolt, T. R.; Wells, C. E.; Sisson, C. R.; Black, C. B.; Ziegler, K. A. Journal of Colloid and Interface Science 2007, 314, 434-445. https://doi.org/10.1016/j.jcis.2007.05.083
  50. Tamai, Y.; Tanaka, H.; Nakanishi, K. Macromolecules 1994, 27, 4498-4508. https://doi.org/10.1021/ma00094a011
  51. Nagel, C.; Schmidtke, E.; Gunther-Schade, K.; Hofmann, D.; Fritsch, D.; Strunskus, T.; Faupel, F. Macromolecules 2000, 33, 2242-2248. https://doi.org/10.1021/ma990760y
  52. Pan, F.; Peng, F.; Jiang, Z. Chemical Engineering Science 2007, 62, 703-710. https://doi.org/10.1016/j.ces.2006.07.046
  53. Fragiadakis, D.; Pissis, P.; Bokobza, L. Polymer 2005, 46, 6001- 6008. https://doi.org/10.1016/j.polymer.2005.05.080
  54. Moore, T. T.; Mahajan, R.; Vu, D. Q.; Koros, W. J. AIChE Journal 2004, 50, 311-321. https://doi.org/10.1002/aic.10029
  55. Peng, F.; Lu, L.; Hu, C.; Wu, H.; Jiang, Z. Journal of Membrane Science 2005, 259, 65-73. https://doi.org/10.1016/j.memsci.2005.03.014
  56. Chen, K. H.; Yang, S. M. Journal of Applied Polymer Science 2002, 86, 414-421. https://doi.org/10.1002/app.10986
  57. Dlubek, G.; De, U.; Pionteck, J.; Arutyunov, N. Y.; Edelmann, M.; Krause Rehberg, R. Macromolecular Chemistry and Physics 2005, 206, 827-840. https://doi.org/10.1002/macp.200400546

Cited by

  1. Plasmon-Induced Photoluminescence Immunoassay for Tuberculosis Monitoring Using Gold-Nanoparticle-Decorated Graphene vol.6, pp.23, 2014, https://doi.org/10.1021/am506389m
  2. Control of Polymorph Selection in Amorphous Calcium Carbonate Crystallization by Poly(Aspartic Acid): Two Different Mechanisms vol.13, pp.21, 2017, https://doi.org/10.1002/smll.201603100