DOI QR코드

DOI QR Code

Montmorillonite K-10 Clay as an Efficient Reusable Heterogeneous Catalyst for the Solvent-Free Microwave Mediated Synthesis of 5-Substituted 1H-Tetrazoles

  • Marvi, Omid (Department of Chemistry, Faculty of Sciences, Payame Noor University (PNU)) ;
  • Alizadeh, Abdolhamid (Faculty of Chemistry and Nanoscience & Nanotechnology Research Center (NNRC), Razi University) ;
  • Zarrabi, Saeid (Department of Chemistry, Faculty of Sciences, Islamic Azad University)
  • Received : 2011.08.04
  • Accepted : 2011.09.14
  • Published : 2011.11.20

Abstract

Various 5-substituted 1H-tetrazole derivatives were synthesized in a simple and environmentally benign method from the reaction of aryl and benzyl nitriles with sodium azide in solvent-free media using montmorillonite K-10 clay as solid recyclable heterogeneous acidic catalyst and microwave irradiation in good yields and short reaction times.

Keywords

References

  1. Zych, A. J.; Herr, R. J. PharmaChem 2007, 6, 21.
  2. Myznikov, L. V.; Hrabalek, A.; Koldobskii, G. I. Chem. Heterocycl. Compd. 2007, 43, 1. https://doi.org/10.1007/s10593-007-0001-5
  3. May, B. C. H.; Abell, A. D. Tetrahedron Lett. 2001, 42, 5641. https://doi.org/10.1016/S0040-4039(01)01101-7
  4. Herr, R. J. Bioorg. Med. Chem. 2002, 10, 3379. https://doi.org/10.1016/S0968-0896(02)00239-0
  5. Holland, G. F.; Pereira, J. N. J. Med. Chem. 1967, 10, 149. https://doi.org/10.1021/jm00314a004
  6. Figdor, S. K.; Schach von Wittenau, M. J. Med. Chem. 1967, 10, 1158. https://doi.org/10.1021/jm00318a038
  7. Esplin, D. W.; Woodbury, D. M. J. Pharmacol. Exp. Ther. 1956, 118, 129.
  8. Modarresi-Alam, A. R.; Keykha, H.; Khamooshi, F.; Dabbagh, H. A. Tetrahedron 2004, 60, 1525. https://doi.org/10.1016/j.tet.2003.12.007
  9. Modarresi-Alam, A. R.; Khamooshi, F.; Rostamizadeh, M.; Keykha, H.; Nasrollahzadeh, M.; Bijanzadeh, H. R.; Kleinpeter, E. J. Mol. Struct. 2007, 841, 67. https://doi.org/10.1016/j.molstruc.2006.11.073
  10. Kadaba, P. K. Synthesis 1973, 71.
  11. Wittenberger, S. J. Org. Prep. Proc. Int. 1994, 26, 499. https://doi.org/10.1080/00304949409458050
  12. Curran, D. P.; Hadida, S.; Kim, S. Y. Tetrahedron 1999, 55, 8997. https://doi.org/10.1016/S0040-4020(99)00458-5
  13. Huff, B. E.; Staszak, M. A. Tetrahedron Lett. 1993, 34, 8011. https://doi.org/10.1016/S0040-4039(00)61437-5
  14. Modarresi-Alam, A. R.; Nasrollahzadeh, M. Turk. J. Chem. 2009, 33, 1.
  15. Meier, H. R.; Heimgarther, H. In Methoden der Organischen Chemie (Houben-Weyl); Schumann, E., Ed.; Georg Thieme: Stuttgart, 1994; Vol. E8d, p 664.
  16. Bulter, R. N. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; Vol. 5, p 791.
  17. Singh, H.; Chawla, A. S.; Kapoor, V. K.; Paul, D.; Malhotra, R. K. Prog. Med. Chem. 1980, 17, 151. https://doi.org/10.1016/S0079-6468(08)70159-0
  18. Ostrovskii, V. A.; Pevznert, M. S.; Kofmna, T. P.; Shcherbinin, M. B.; Tselinskii, I. V. Targets Heterocycl. Syst. 1999, 3, 467.
  19. Koldobskii, G. I.; Ostrovskii, V. A. Usp. Khim. 1994, 63, 847.
  20. Demko, Z. P.; Sharpless, K. B. J. Org. Chem. 2001, 66, 7945. https://doi.org/10.1021/jo010635w
  21. Demko, Z. P.; Sharpless, K. B. Org. Lett. 2002, 4, 2525. https://doi.org/10.1021/ol020096x
  22. Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc. 2002, 124, 12210. https://doi.org/10.1021/ja0206644
  23. Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc. 2003, 125, 9983. https://doi.org/10.1021/ja030204q
  24. Amantini, D.; Beleggia, R.; Fringuelli, F.; Pizzo, F.; Vaccoro, L. J. Org. Chem. 2004, 69, 2896. https://doi.org/10.1021/jo0499468
  25. Lakshmi Kantam, M.; Shiva Kumar, K. B.; Sridhar, C. Adv. Synth. Catal. 2005, 347, 1212. https://doi.org/10.1002/adsc.200505011
  26. Jin, T.; Kitahara, F.; Kamijo, S.; Yamamoto, Y. Tetrahedron Lett. 2008, 49, 2824. https://doi.org/10.1016/j.tetlet.2008.02.115
  27. Kantam, M. L.; Shiva Kumar, K. B.; Phani Raja, K. J. Mol. Catal. A: Chem. 2006, 247, 186. https://doi.org/10.1016/j.molcata.2005.11.046
  28. Dabbagh, H. A.; Najafi Chermahini, A.; Teimouri, A. Heteroatom Chem. 2006, 17, 416. https://doi.org/10.1002/hc.20241
  29. Schroeder, G. M.; Marshall, S.; Wan, H.; Purandare, A. V. Tetrahedron Lett. 2010, 51, 1404. https://doi.org/10.1016/j.tetlet.2010.01.024
  30. Tang , Q.; Gianatassio, R.; Tetrahedron Lett. 2010, 51, 3473. https://doi.org/10.1016/j.tetlet.2010.04.091
  31. Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaeee, S. Tetrahedron Lett. 2009, 50, 4435. https://doi.org/10.1016/j.tetlet.2009.05.048
  32. Duncia, J. V.; Pierce, M. E.; Santella III, J. B. J. Org. Chem. 1991, 56, 2395. https://doi.org/10.1021/jo00007a027
  33. Wittenberger, S. J.; Donner, B. G. J. Org. Chem. 1993, 58, 4139. https://doi.org/10.1021/jo00067a058
  34. Najafi Chermahini, A.; Teimouri, A.; Momenbeik, F.; Zarei, A.; Dalirnasab, Z.; Ghaedi, A.; Roosta, M. J. Heterocyclic Chem. 2010, 47, 913. https://doi.org/10.1002/jhet.382
  35. Najafi Chermahini, A.; Teimouri, A.; Moaddeli, A.Heteroatom Chem. 2011, 22, 168. https://doi.org/10.1002/hc.20672
  36. Alterman, M.; Hallberg, A. J. Org. Chem. 2000, 65, 7984. https://doi.org/10.1021/jo0009954
  37. Wang, B.; Gu, Y.; Luo, C.; Yang, T.; Yang, L.; Suo, J. Tetrahedron Lett. 2004, 45, 3369. https://doi.org/10.1016/j.tetlet.2004.03.017
  38. Corma, A.; Garcia, H. Catal. Today 1997, 38, 257. https://doi.org/10.1016/S0920-5861(97)81500-1
  39. Sikdar, S. K.; Howell, S. G. J. Clean. Product. 1998, 6, 253. https://doi.org/10.1016/S0959-6526(98)00026-2
  40. Sheldon, R. A.; Downing, R. S. Appl. Catal. 1999, 189, 163. https://doi.org/10.1016/S0926-860X(99)00274-4
  41. Baghernejad, B. Lett. Org. Chem. 2010, 7, 255. https://doi.org/10.2174/157017810791112487
  42. Lauren, R.; Leporterie, A.; Dubac, J.; Berlan, J.; Lauverie, S.; Audhuy, F. M. J. Org. Chem. 1992, 57, 7099. https://doi.org/10.1021/jo00052a022
  43. Caddick, S. Tetrahedron 1995, 51, 10403. https://doi.org/10.1016/0040-4020(95)00662-R
  44. Bose, A. K.; Manhas, M. S.; Ganguly, S. N.; Sharma, A. H.; Banik, B. K. Synthesis 2002, 1578.
  45. Varma, R. S. Pure Appl. Chem. 2001, 73(1), 193. https://doi.org/10.1351/pac200173010193
  46. Chauhan, S. M. S.; Singh, R.; Geetanjali Synth. Commun. 2003, 33(7), 1179. https://doi.org/10.1081/SCC-120017194
  47. Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley-VCH: Weinheim, 2005.
  48. Tierney, J. P.; Lidstrom, P. Microwave Assisted Organic Synthesis; Blackwell: Oxford, 2005.
  49. Loupy, A.; Perreux, L.; Liagre, M.; Burle, K.; Moneuse, M. Pure Appl. Chem. 2001, 73(1), 161. https://doi.org/10.1351/pac200173010161
  50. Bram, G.; Loupy, A.; Villemerin, D. Solid Support and Catalyzed in Organic Chemistry; Ellis Horwood: London, 1992.
  51. Boruah, A.; Baruah, M.; Prajapti, D.; Sandhu, J. S. Chem. Lett. 1996, 965.
  52. Price, P. M.; Clark, J. H.; Macquarries, D. J. J. Chem. Soc. Dalton Trans 2000, 101.
  53. Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathe, D. Synthesis 1998, 1213.
  54. Varma, R. S. Green Chem. 1999, 1, 43. https://doi.org/10.1039/a808223e
  55. Clark, J. H. Pure Appl. Chem. 2001, 73(1), 103. https://doi.org/10.1351/pac200173010103
  56. Loupy, A. Microwaves in Organic Synthesis; Wiley-VCH: Weinheim, 2002
  57. Varma, R. S. Clean Prod. Pros. 1999, 1, 132.
  58. Habibi, D.; Marvi, O. Can. J. Chem. 2007, 85, 81. https://doi.org/10.1139/v06-189
  59. Habibi, D.; Marvi, O. Catal. Commun. 2007, 8, 127.
  60. Habibi, D.; Marvi, O. Arkivoc 2006, xiii, 8.
  61. Habibi, D.; Marvi, O. J. Serb. Chem. Soc. 2005, 70, 579. https://doi.org/10.2298/JSC0504583H
  62. Habibi, D.; Marvi, O. Synth. Commun. 2007, 37, 3165. https://doi.org/10.1080/00397910701545247
  63. Habibi, D.; Marvi, O. Chinese J. Chem. 2008, 26, 522. https://doi.org/10.1002/cjoc.200890098
  64. Marvi, O.; Giahi, M. Bull. Korean Chem. Soc. 2009, 30, 2918. https://doi.org/10.5012/bkcs.2009.30.12.2918
  65. Curran, D. P.; Hadida, S.; Kim, S. Y. Tetrahedron 1999, 55, 8997. https://doi.org/10.1016/S0040-4020(99)00458-5
  66. Kantam, M. L.; Shiva Kumar, K. B.; Phani Raja, K. J. Mol. Catal. A: Chem 2006, 247, 186. https://doi.org/10.1016/j.molcata.2005.11.046
  67. Commarmot, R.; Didenot, R.; Gardais, J. F. Rhone-Poulenc/ Prolabo, Paent 84/03496, 27 Oct., 1986.
  68. Prolabo, Fr., Patent 62241/D, 14669 Fr, 23 Dec., 1991.

Cited by

  1. Heteropolyacid catalyzed click synthesis of 5-substituted 1H-tetrazoles from [bmim]N3 and nitriles under solvent-free conditions vol.144, pp.9, 2013, https://doi.org/10.1007/s00706-013-1025-4
  2. and nitriles vol.5, pp.126, 2015, https://doi.org/10.1039/C5RA21481E
  3. A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation vol.5, pp.84, 2015, https://doi.org/10.1039/C5RA11426H
  4. Tungsten hexachloride nanoparticles loaded on montmorillonite K-10: a novel solid acid catalyst in the synthesis of symmetrical and unsymmetrical azines vol.13, pp.8, 2016, https://doi.org/10.1007/s13738-016-0866-2
  5. Regio-selective synthesis of 5-substituted 1H-tetrazoles using ionic liquid [BMIM]N3 in solvent-free conditions: a click reaction vol.42, pp.3, 2016, https://doi.org/10.1007/s11164-015-2105-3
  6. Microwave activation in tetrazole chemistry vol.52, pp.11, 2016, https://doi.org/10.1007/s10593-017-1981-4
  7. -Heterocyclic Cores vol.54, pp.1, 2016, https://doi.org/10.1002/jhet.2591
  8. N-labelled tetrazoles vol.41, pp.16, 2017, https://doi.org/10.1039/C7NJ00568G
  9. A novel route for the synthesis of 5-substituted 1-H tetrazoles in the presence of polymer-supported palladium nanoparticles vol.41, pp.18, 2017, https://doi.org/10.1039/C7NJ02222K
  10. : Recyclable and efficient deep eutectic solvent for the [2+3] cycloaddition reaction of organic nitriles with sodium azide vol.47, pp.8, 2017, https://doi.org/10.1080/00397911.2017.1285033
  11. N,N-Dimethylpyridin-4-amine (DMAP) based ionic liquids: evaluation of physical properties via molecular dynamics simulations and application as a catalyst for Fisher indole and 1H-tetrazole synthesis vol.7, pp.54, 2017, https://doi.org/10.1039/C7RA06824G
  12. -tetrazoles pp.02682605, 2017, https://doi.org/10.1002/aoc.3988
  13. @1,10-phenanthroline-5,6-diol@Mn nano-catalyst for the green synthesis of tetrazoles and its biological performance pp.02682605, 2018, https://doi.org/10.1002/aoc.4005
  14. β-Cyclodextrin: A Green and Efficient Supramolecular Catalyst for Organic Transformations pp.15278999, 2018, https://doi.org/10.1002/tcr.201800016
  15. -Montmorillonite Perchloric Acid and Evaluation of Their Biological Activities pp.1563-5333, 2020, https://doi.org/10.1080/10406638.2018.1553197
  16. Montmorillonite K-10 as a catalyst in the synthesis of 5, 5-disubstituted hydantoins under ultrasound irradiation vol.125, pp.5, 2011, https://doi.org/10.1007/s12039-013-0427-5
  17. Microwave (Mw)‐assisted Synthesis of 5‐Substituted 1H‐Tetrazoles via [3+2] Cycloaddition Catalyzed by Mw‐Pd/Co Nanoparticles Decorated on Multi‐Walled Carbon Nanotubes vol.1, pp.8, 2016, https://doi.org/10.1002/slct.201600265
  18. Plasma marker based hepatoprotective evaluation of some novel synthesized benzofluorenone analogues: A medicinal chemistry approach vol.3, pp.1, 2011, https://doi.org/10.1016/j.kijoms.2017.02.002
  19. N-Alkylated 1,4-Diazabicyclo[2.2.2]octane-Polyethylene Glycol Melt as Deep Eutectic Solvent for the Synthesis of Fisher Indoles and 1H-Tetrazoles vol.2, pp.6, 2011, https://doi.org/10.1021/acsomega.7b00618
  20. Green synthesis of the 1‐substituted 1H‐1, 2, 3, 4‐tetrazoles over bifunctional catalyst based on copper intercalated into Mg/Al hydrotalcite modified magnetite nanoparticles vol.34, pp.8, 2011, https://doi.org/10.1002/aoc.5682
  21. Methionine-Coated Fe3O4 Nanoparticles: An Efficient and Reusable Nanomagnetic Catalyst for the Synthesis of 5-Substituted 1H-Tetrazoles vol.56, pp.9, 2020, https://doi.org/10.1134/s1070428020090237
  22. The mineral alum: an effective and low-cost heterogeneous catalyst for the successful synthesis of 5-substituted-1H-tetrazoles vol.51, pp.1, 2011, https://doi.org/10.1080/24701556.2020.1762220