DOI QR코드

DOI QR Code

Effect of Crown Ring Size and Upper Moiety on the Extraction of s-Block Metals by Ionizable Calixcrown Nano-baskets

  • Mokhtari, Bahram (Department of Chemical Engineering, Shahreza Branch, Islamic Azad University) ;
  • Pourabdollah, Kobra (Department of Chemical Engineering, Shahreza Branch, Islamic Azad University)
  • Received : 2011.07.27
  • Accepted : 2011.09.14
  • Published : 2011.11.20

Abstract

Eight ionizable nano-baskets of cone 25,26-di(carboxymethoxy)calix[4]arene-crown-3,4,5,6 were synthesized and were verified by $^1H$ and $^{13}C$ NMR spectroscopy, IR spectroscopy and elemental analysis. The competitive solvent extractions of alkali and alkaline earth metal cations were studied using such nano-baskets. The novelty of this study is including three binding units of calixarene's bowl, crown ether's ring and electron-donor ionizable moieties in a unique scaffold to assess the binding tendency towards the cations. The objective of this work is to study the extraction efficiency, selectivity and $pH_{1/2}$ of such complexes. The result of solvent extraction experiments indicated that these compounds were effective extractants of alkali and alkaline earth metal cations. Their selectivities were greatly influenced by the acidity of solution and the conformations of the calixcrown. One conformer was selective to $Na^+$ in pH ${\geq}$ 4, while the other was highly selective to $Ba^{2+}$ in pH 6 and upper.

Keywords

References

  1. Mokhtari, B.; Pourabdollah, K.; Dalali, N. J. Incl. Phenom. Macrocycl. Chem. 2011, 69, 1. https://doi.org/10.1007/s10847-010-9848-7
  2. Mokhtari, B.; Pourabdollah, K.; Dalali, N. J. Coord. Chem. 2011, 64, 743. https://doi.org/10.1080/00958972.2011.555538
  3. Mokhtari, B.; Pourabdollah, K.; Dallali, N. J. Radioanal. Nucl. Chem. 2011, 287, 921. https://doi.org/10.1007/s10967-010-0881-1
  4. Mokhtari, B.; Pourabdollah, K.; Dalali, N. Chromatographia. 2011, 73, 829. https://doi.org/10.1007/s10337-011-1954-1
  5. Mokhtari, B.; Pourabdollah, K. Asian J. Chem. 2011, 23, 4717.
  6. Salorinne, K.; Nissinen, M. J. Incl. Phenom. Macrocycl. Chem. 2008, 61, 11. https://doi.org/10.1007/s10847-008-9411-y
  7. Kim, J. S.; Vicens, J. J. Incl. Phenom. Macrocycl. Chem. 2009, 63, 189. https://doi.org/10.1007/s10847-008-9503-8
  8. Lamare, V.; Dozol, J. F.; Ugozzoli, F.; Casnati, A.; Ungaro, R. Eur. J. Org. Chem. 1998, 1559.
  9. Hong, J.; Lee, C.; Ham, S. Korean Chem. Soc. 2010, 31, 453. https://doi.org/10.5012/bkcs.2010.31.02.453
  10. Dong, Y.; Kim, T. H.; Lee, C. S.; Kim, H. J.; Lee, J. H.; Lee, J. H.; Kim, H.; Kim, J. S. Korean Chem. Soc. 2010, 31, 3549. https://doi.org/10.5012/bkcs.2010.31.12.3549
  11. Choe, J. I. Korean Chem. Soc. 2011, 32, 1685. https://doi.org/10.5012/bkcs.2011.32.5.1685
  12. Ungaro, R.; Pochini, A.; Andreetti, G. D. J. Incl. Phenom. Molecul. Recogn. Chem. 1984, 2, 199. https://doi.org/10.1007/BF00663257
  13. Vicens, J. J. Incl. Phenom. Macrocycl. Chem. 2006, 55, 193. https://doi.org/10.1007/s10847-005-9021-x
  14. Arena, G.; Contino, A.; Longo, E.; Sciotto, D.; Spoto, G.; Torrisi, A. J. Supramol. Chem. 2002, 2, 521. https://doi.org/10.1016/S1472-7862(02)00022-9
  15. Lynch, J. A.; Mestayer, J. J.; Blanda, M. T. J. Supramol. Chem. 2001, 1, 139. https://doi.org/10.1016/S1472-7862(02)00005-9
  16. Zhang, D.; Crawford, J. D.; Bartsch, R. A. Tetrahedron 2008, 64, 9843. https://doi.org/10.1016/j.tet.2008.07.115
  17. Zhang, D.; Cao, X.; Purkiss, D. W.; Bartsch, R. A. Org. Biomol. Chem. 2007, 5, 1251. https://doi.org/10.1039/b700072c
  18. Tu, C.; Surowiec, K.; Bartsch, R. A. Tetrahedron 2007, 63, 4184. https://doi.org/10.1016/j.tet.2007.02.105
  19. Zhou, H.; Surowiec, K.; Purkiss, D. W.; Bartsch, R. A. Org. Biomol. Chem. 2006, 4, 1104. https://doi.org/10.1039/b517348e
  20. Zhou, H.; Surowiec, K.; Purkiss, D. W.; Bartsch, R. A. Org. Biomol. Chem. 2005, 3, 1676. https://doi.org/10.1039/b501822f
  21. Zhou, H.; Liu, D.; Gega, J.; Surowiec, K.; Purkiss, D. W.; Bartsch, R. A. Org. Biomol. Chem. 2007, 5, 324. https://doi.org/10.1039/b611570e
  22. Tu, C.; Liu, D.; Surowiec, K.; Purkiss, D. W.; Bartsch, R. A. Org. Biomol. Chem. 2006, 4, 2938. https://doi.org/10.1039/b604218j
  23. Tu, C.; Surowiec, K.; Gega, J.; Purkiss, D. W., Bartsch, R. A. Tetrahedron 2008, 64, 1187. https://doi.org/10.1016/j.tet.2007.11.065
  24. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 3081. https://doi.org/10.1080/00958972.2011.613462
  25. Mokhtari, B.; Pourabdollah, K. J. Coord. Chem. 2011, 64, 3189. https://doi.org/10.1080/00958972.2011.616930
  26. Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2011. doi: 10.1007/s10847-011-0052-1.
  27. Mokhtari, B.; Pourabdollah, K. J. Incl. Phenom. Macrocycl. Chem. 2011. doi: 10.1007s10847-011-0062-z. https://doi.org/10.1007s10847-011-0062-z
  28. Mokhtari, B.; Pourabdollah, K. Supramol. Chem. 2011. doi: 10.1080/10610278.2011.605452.
  29. Mokhtari, B.; Pourabdollah, K. J. Therm. Anal. Calorim. 2011. doi: 10.1007/s10973-011-2014-7.

Cited by

  1. Binding Study of Ionizable Calix[4]-1,3-Crowns-5,6 Nano-baskets by Differential Pulse Voltammetry vol.159, pp.3, 2012, https://doi.org/10.1149/2.048203jes
  2. Application of nano-baskets in preconcentration of tetrahedral oxoanions in the produced water of oil wells vol.24, pp.12, 2012, https://doi.org/10.1080/10610278.2012.732225
  3. Dispersive enhancement in liquid–liquid microextraction by dual supramolecular role of nano-baskets vol.24, pp.4, 2012, https://doi.org/10.1080/10610278.2012.655278
  4. Extraction of alkali metals using emulsion liquid membrane by nano-baskets of calix[4]crown vol.29, pp.12, 2012, https://doi.org/10.1007/s11814-012-0085-1
  5. Inclusion separation of alkali metals in emulsion liquid membranes by nanobaskets of calix[4]crown-3 vol.29, pp.4, 2012, https://doi.org/10.1590/S0104-66322012000400010
  6. Inclusion Extraction of Alkali Metals by Emulsion Liquid Membranes and Nano-baskets of p-tert-Calix[4]arene Bearing Di-[N-(X)sulfonyl Carboxamide] and Di-(1-propoxy) in ortho-cone Conformation vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1509
  7. Metabolic Fingerprints by Nano-baskets of 1,2-Alternate Calixarene and Emulsion Liquid Membranes vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2320
  8. Electrochemical Study of Structural Effects in Complexation of Nano-baskets: Calix[4]-1,2-crown-3, -crown-4, -crown-5, -crown-6 vol.42, pp.8, 2012, https://doi.org/10.1080/15533174.2012.680131
  9. Nano-baskets in Emulsion Liquid Membranes for Selective Extraction of Alkali Metals vol.59, pp.9, 2012, https://doi.org/10.1002/jccs.201100737
  10. Extraction of vanadyl porphyrins in crude oil by inclusion dispersive liquid–liquid microextraction and nano-baskets of calixarene vol.74, pp.1-4, 2012, https://doi.org/10.1007/s10847-011-0099-z
  11. Electrochemical investigation of nano-baskets of calix[4]-1,3-crowns-5,6 complexes vol.76, pp.3-4, 2013, https://doi.org/10.1007/s10847-012-0210-0
  12. Inclusion extraction of alkali metals by emulsion liquid membranes bearing nano-baskets vol.76, pp.3-4, 2013, https://doi.org/10.1007/s10847-012-0212-y
  13. Application of nano-baskets in metabolomics vol.77, pp.1-4, 2013, https://doi.org/10.1007/s10847-012-0233-6
  14. Separation of Alkali Metals by Emulsion Liquid Membranes Facilitated by Nano-Baskets of Calixarene pp.1520-5754, 2013, https://doi.org/10.1080/01496395.2013.794466
  15. RETRACTED ARTICLE: Inclusion of piperidine-modified nano-baskets towards rare earth metals vol.78, pp.1-4, 2014, https://doi.org/10.1007/s10847-013-0312-3
  16. RETRACTED ARTICLE: Application of nano-baskets in polymer inclusion membranes vol.79, pp.1-2, 2014, https://doi.org/10.1007/s10847-013-0320-3
  17. Cesium and Strontium Uptake Utilizing a New Ternary Solid-State Supramolecular Adsorbent under a Framework of Group Partitioning vol.62, pp.4, 2017, https://doi.org/10.1021/acs.jced.6b01007
  18. Binding Survey of Ionizable Calix[4]-1,2-crown-3 Nano-baskets by Differential Pulse Voltammetry vol.24, pp.2, 2011, https://doi.org/10.1002/elan.201100584
  19. Solvent extraction of alkali metals by di-ionizable nano-baskets vol.64, pp.23, 2011, https://doi.org/10.1080/00958972.2011.635790
  20. Investigation of ionizable nano-baskets of calix[4]-1,2-crown-3 by differential pulse voltammetry vol.64, pp.23, 2011, https://doi.org/10.1080/00958972.2011.636040
  21. Extraction of s-block metals by nano-baskets of calix[4]crown-3 vol.90, pp.6, 2011, https://doi.org/10.1139/v2012-020
  22. Voltammetric Study of Nano-baskets of Calix[4]-1,3-crowns-5, -crowns-6 Complexes vol.76, pp.None, 2011, https://doi.org/10.1016/j.electacta.2012.05.028
  23. Application of Nano-Baskets for Extraction of Lanthanides vol.36, pp.12, 2011, https://doi.org/10.3184/174751912x13527973569178
  24. Applications of nano-baskets in drug development: high solubility and low toxicity vol.36, pp.1, 2013, https://doi.org/10.3109/01480545.2011.653490
  25. Selective Adsorption of Rubidium onto a New 1,3-Alternate Calix[4]crown-5 Mesoporous Adsorbent with a Polar Carrier Containing Polyalkyl Ester vol.65, pp.1, 2011, https://doi.org/10.1021/acs.jced.9b00865