References
- Clark, J. H. Acc. Chem. Res. 2002, 35, 791. https://doi.org/10.1021/ar010072a
- Kozhevnikov, I. V. Chem. Rev. 1998, 98, 171. https://doi.org/10.1021/cr960400y
- Kozhevnikov, I. V.; Derouane, E., Eds., In Catalysis for Fine Chemical Synthesis, Catalysis by Polyoxometalates 2; Wiley: New York, 2002.
- Romanelli, G. P.; Bennardi, D.; Ruiz, D. M.; Baronetti, G.; Thomas, H. J.; Autino, J. C. Tetrahedron Lett. 2004, 45, 8935.
- Torok, B.; Bucsi, I.; Beregszaszi, T.; Kapocsi, I.; Molnar, A. J. Mol. Cat A: Chem. 1996, 107, 305. https://doi.org/10.1016/1381-1169(95)00225-1
- Torok, B.; Bucsi, I.; Beregszaszi, T.; Kapocsi, I.; Molnar, A. Catalysis of Organic Reactions; Marcel Dekker: New York, 1996; p 393.
- Molnar, A.; Beregszaszi, T. Tetrahedron Lett. 1997, 37, 8597.
- Beregzazi, T.; Torok, B.; Molnar, A.; Olah, G. A.; Prakash, G. K. S. Catalysis Lett. 1997, 48, 83. https://doi.org/10.1023/A:1019058516695
- Molnar, A.; Keresszegi, C. S.; Beregszaszi, T.; Torok, B.; Bartok, M. Catalysis of Organic Reactions; Marcell Dekker: New York, 1998; p 507.
- Kamakshi, R.; Reddy, B. S. R. Catalysis Commun. 2007, 8, 825. https://doi.org/10.1016/j.catcom.2006.08.044
- Heravi, M. M.; Sadjadi, S.; Oskooie, H. A.; Shoar, R. H.; Bamoharram, F. F. Tetrahedron Lett. 2009, 50, 662. https://doi.org/10.1016/j.tetlet.2008.11.105
- Rafiee, E.; Shahbhazi, F. J. Mol. Cat A: Chemical. 2006, 250, 57. https://doi.org/10.1016/j.molcata.2006.01.049
- Rafiee, E.; Shahbhazi, F.; Joshaghani, M.; Tork, F. J. Mol. Cat A: Chemical. 2005, 242, 129. https://doi.org/10.1016/j.molcata.2005.08.005
- Wang, J. L.; Liu, D.; Zhang, Z. J.; Shan, S.; Han, X.; Srinivasula, S. M.; Croce, C. M.; Alnemri, E. S.; Huang, Z. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7124. https://doi.org/10.1073/pnas.97.13.7124
- El-Tamany, E. S.; El-Shahed, F. A.; Mohamed, B. H. J. Serb. Chem. Soc. 1999, 64, 9.
- Zaki, M. E. A.; Soliman, H. A.; Hiekal, O. A.; Rashad, A. E. Z. Naturforsch. C. 2006, 61c, 1.
- Abdelrazek, F. M.; Metz, P.; Metwally, N. H.; El-Mahrouky, S. F. Arch. Pharm. 2006, 339, 456. https://doi.org/10.1002/ardp.200600057
- Abdelrazek, F. M.; Metz, P.; Kataeva, O.; Jager, A.; EI-Mahrouky, S. F. Arch. Pharm. 2007, 340, 543. https://doi.org/10.1002/ardp.200700157
- Foloppe, N.; Fisher, L. M.; Howes, R.; Potter, A.; Robertson, A. G. S.; Surgenor, A. E. Bioorg. Med. Chem. 2006, 14, 4792. https://doi.org/10.1016/j.bmc.2006.03.021
- Sosnovskikh, V. Y.; Barabanov, M. A.; Usachev, B. I.; Irgashev, R. A.; Moshkin, V. S. Russ. Chem. Bull., Int. Ed. 2005, 54, 2846.
- El-Assiery, S. A.; Sayed, G. H.; Acta Pharm. 2004, 54, 143.
- Guard, J. A. M.; Steel, P. J. ARKIVOC 2001, vii, 32.
- Rodinovskaya, L. A.; Gromova, A. V.; Shestopalov, A. M.; Nesterov, V. N. Russ. Chem. Bull., Int. Ed. 2003, 52, 2207. https://doi.org/10.1023/B:RUCB.0000011880.05561.c1
- Otto, H. H. Arch. Pharm. 1974, 307, 444.
- Otto, H. H.; Schmelz, H. Arch. Pharm. 1979, 312, 478. https://doi.org/10.1002/ardp.19793120604
- Junek, H.; Aigner, H. Chem. Ber. 1973, 106, 914. https://doi.org/10.1002/cber.19731060323
- Wamhoff, H.; Kroth, E.; Strauch, K. Synthesis 1993, 11, 1129.
- Tacconi, G.; Gatti, G.; Desimoni, G. J. Prakt. Chem. 1980, 322, 831. https://doi.org/10.1002/prac.19803220519
- Sharanin Yu, A.; Sharanina, L. G.; Puzanova, V. V. Zh. Org. Khim. 1983, 19, 2609.
- Vasuki, G.; Kumaravel, K. Tetrahedron Letters 2008, 49, 5636. https://doi.org/10.1016/j.tetlet.2008.07.055
- Kuppusamy, K.; Kasi, P. Tetrahedron Letters 2010, 51, 3312. https://doi.org/10.1016/j.tetlet.2010.04.087
- Mecadon, H.; Rohman, Md. R.; Rajbangshi, M.; Myrboh, B. Tetrahedron Lett. 2011, 52, 2523. https://doi.org/10.1016/j.tetlet.2011.03.036
- Mecadon, H.; Rohman, Md. R.; Kharbangar, I.; Laloo, B. M.; Kharkongor, I.; Rajbangshi, M.; Myrboh, B. Tetrahedron Lett. 2011, 52, 3228. https://doi.org/10.1016/j.tetlet.2011.04.048
- Bandgar, B. P.; Bettigeri, S. V.; Phopse, J. Org. Lett. 2004, 6, 2105. https://doi.org/10.1021/ol049692c
- Bandgar, B. P.; Bandgar, S. B.; Korbad, B. L.; Sawant, S. S. Tetrahedron Lett. 2007, 48, 1287. https://doi.org/10.1016/j.tetlet.2006.12.024
- Bandgar, B. P.; Korbad, B. L.; Patil, S. A.; Bandgar, S. B.; Chavan, H. V.; Hote, B. S. Aust. J. Chem. 2008, 61, 700. https://doi.org/10.1071/CH08106
- Bandgar, B. P.; Patil, S. A.; Korbad, B. L.; Bandgar, S. B.; Hote, B. S. Aust. J. Chem. 2008, 61, 552. https://doi.org/10.1071/CH08041
Cited by
- Pods: An Efficient Surfactant Type Catalyst for Synthesis of 3-Carboxycoumarins and Cinnamic Acids via Knoevenagel Condensation vol.1, pp.8, 2013, https://doi.org/10.1021/sc4000237
- Cerium ammonium nitrate (CAN)-catalyzed four-component one-pot synthesis of multi-substituted pyrano[2,3- $$\varvec{c}$$ c ]pyrazoles under ultrasound irradiation vol.17, pp.4, 2013, https://doi.org/10.1007/s11030-013-9465-7
- ZnO Nanoparticles as an Efficient, Heterogeneous, Reusable, and Ecofriendly Catalyst for Four-Component One-Pot Green Synthesis of Pyranopyrazole Derivatives in Water vol.2013, pp.1537-744X, 2013, https://doi.org/10.1155/2013/680671
- Nano-ZnO Catalyzed Green and Efficient One-Pot Four-Component Synthesis of Pyranopyrazoles vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/840954
- Synthesis of 6-amino-4-(4-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles using disulfonic acid imidazolium chloroaluminate as a dual and heterogeneous catalyst vol.37, pp.12, 2013, https://doi.org/10.1039/c3nj00629h
- An Efficient Multi-component Synthesis of 6-Amino-3-methyl-4-Aryl-2,4- dihydropyrano[2,3-c]Pyrazole-5-carbonitriles vol.45, pp.5, 2013, https://doi.org/10.1080/00304948.2013.816220
- Applications of heteropoly acids in multi-component reactions vol.11, pp.1, 2014, https://doi.org/10.1007/s13738-013-0291-8
- ZnS nanoparticles as an efficient and reusable catalyst for synthesis of 4H-pyrano[2,3-c]pyrazoles vol.12, pp.6, 2015, https://doi.org/10.1007/s13738-014-0571-y
- /MNPs): an efficient magnetically recyclable catalyst for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives vol.5, pp.91, 2015, https://doi.org/10.1039/C5RA11343A
- An efficient catalyst- and solvent-free method for the synthesis of medicinally important dihydropyrano[2,3-c]pyrazole derivatives using ball milling technique vol.13, pp.3, 2016, https://doi.org/10.1007/s13738-015-0793-7
- ]pyrazoles vol.31, pp.6, 2016, https://doi.org/10.1002/aoc.3633
- Synthesis of dihydropyrano[2,3-c]pyrazoles using Ca9.5Mg0.5(PO4)5.5(SiO4)0.5F1.5 as a new nano cooperative catalyst vol.122, pp.1, 2017, https://doi.org/10.1007/s11144-017-1217-8
- nanoparticle-supported IL) as a novel, green and heterogeneous catalyst vol.31, pp.12, 2017, https://doi.org/10.1002/aoc.3816
- Using magnetized water as a solvent for a green, catalyst-free, and efficient protocol for the synthesis of pyrano[2,3-c]pyrazoles and pyrano[4′,3′:5,6]pyrazolo [2,3-d]pyrimidines vol.43, pp.2, 2017, https://doi.org/10.1007/s11164-016-2680-y
- CeO2/ZrO2 as green catalyst for one-pot synthesis of new pyrano[2,3-c]-pyrazoles vol.43, pp.8, 2017, https://doi.org/10.1007/s11164-017-2878-7
- as a new Schiff base complex and catalyst pp.02682605, 2017, https://doi.org/10.1002/aoc.3968
- Synergetic effects of naturally sourced metal oxides in organic synthesis: a greener approach for the synthesis of pyrano[2,3-c]pyrazoles and pyrazolyl-4H-chromenes pp.1568-5675, 2018, https://doi.org/10.1007/s11164-017-3197-8
- Synthesis of Pyranopyrazoles Using Magnetically Recyclable Heterogeneous Iron Oxide-silica Core-shell Nanocatalyst vol.62, pp.12, 2015, https://doi.org/10.1002/jccs.201400387
- ) Catalyzed Synthesis of Fused 7-Azaindole Derivatives Using Domino Knoevenagel-Michael Reaction vol.63, pp.4, 2016, https://doi.org/10.1002/jccs.201500540
- MIL-53(Fe) Metal-Organic Frameworks (MOFs) as an Efficient and Reusable Catalyst for the One-Pot Four-Component Synthesis of Pyrano[2,3-c]-pyrazoles pp.02682605, 2018, https://doi.org/10.1002/aoc.4679
- -chromene pp.1945-5453, 2019, https://doi.org/10.1080/00304948.2018.1549903
- Design and development of a new functionalized cellulose-based magnetic nanocomposite: preparation, characterization, and catalytic application in the synthesis of diverse pyrano[2,3-c]pyrazole derivatives pp.1735-2428, 2019, https://doi.org/10.1007/s13738-019-01610-9
- Synthesis of pyranopyrazoles using isonicotinic acid as a dual and biological organocatalyst vol.3, pp.48, 2011, https://doi.org/10.1039/c3ra45289a
- Synthesis of pyranopyrazoles using isonicotinic acid as a dual and biological organocatalyst vol.3, pp.48, 2011, https://doi.org/10.1039/c3ra45289a
- An Efficient Solvent-Free Synthesis of Naphthopyranopyrimidines Using Heteropolyacid as an Ecofriendly Catalyst vol.44, pp.4, 2011, https://doi.org/10.1080/15533174.2013.783858
- A highly efficient and sustainable synthesis of dihydropyrano[2,3-c]pyrazoles using polystyrene-supported p-toluenesulfonic acid as reusable catalyst vol.1, pp.1, 2011, https://doi.org/10.1080/23312009.2015.1063830
- Synthesis and Antimicrobial Screening of Pyrimidine Annulated Dihydropyrano[2, 3-c]pyrazole Derivatives vol.62, pp.2, 2011, https://doi.org/10.5012/jkcs.2018.62.2.87
- One‐Pot Multicomponent Synthesis of Pyrano[2,3 c]pyrazole Derivatives Using CMCSO 3 H as a Green Catalyst vol.4, pp.31, 2011, https://doi.org/10.1002/slct.201901676
- A Brief Study on the Role of Silicotungstic Acid in Modern Organic Syntheses vol.32, pp.10, 2020, https://doi.org/10.14233/ajchem.2020.22847
- Synthesis of Some Novel Antimicrobial and Antioxidant Agents of Functionalized Pyrazolo[4',3':5,6]pyrano[3,2-d]- [1,2]azaphospholes and Pyrazolo[4',3':5,6]pyrano[2,3-d][1,3,2]diazaphosphinines vol.100, pp.11, 2011, https://doi.org/10.3987/com-20-14325
- An expedient and eco-friendly approach for multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles using nano-Al2O3/BF3/Fe3O4 as reusable catal vol.50, pp.1, 2011, https://doi.org/10.1080/24701556.2019.1661458
- Green synthesis of pyranopyrazoles via biocatalytic one-pot Knoevenagel condensation-Michael-type addition-heterocyclization cascade in non-aqueous media vol.46, pp.5, 2011, https://doi.org/10.1007/s11164-020-04122-x
- A Review on the Recent Multicomponent Synthesis of Pyranopyrazoles vol.41, pp.2, 2011, https://doi.org/10.1080/10406638.2019.1584576