DOI QR코드

DOI QR Code

QSPR Study of the Absorption Maxima of Azobenzene Dyes

  • Xu, Jie (Key Lab of Green Processing & Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University) ;
  • Wang, Lei (College of Materials Science & Engineering, Wuhan Textile University) ;
  • Liu, Li (College of Materials Science & Engineering, Wuhan Textile University) ;
  • Bai, Zikui (College of Materials Science & Engineering, Wuhan Textile University) ;
  • Wang, Luoxin (College of Materials Science & Engineering, Wuhan Textile University)
  • Received : 2011.05.03
  • Accepted : 2011.08.31
  • Published : 2011.11.20

Abstract

A quantitative structure-property relationship (QSPR) study was performed for the prediction of the absorption maxima of azobenzene dyes. The entire set of 191 azobenzenes was divided into a training set of 150 azobenzenes and a test set of 41 azobenzenes according to Kennard and Stones algorithm. A seven-descriptor model, with squared correlation coefficient ($R^2$) of 0.8755 and standard error of estimation (s) of 14.476, was developed by applying stepwise multiple linear regression (MLR) analysis on the training set. The reliability of the proposed model was further illustrated using various evaluation techniques: leave-many-out crossvalidation procedure, randomization tests, and validation through the test set.

Keywords

References

  1. Buttingsrud, B.; Alsberg, B. K.; Astrand, P.-O. Phys. Chem. Chem. Phys. 2007, 9, 2226. https://doi.org/10.1039/b617470a
  2. Zollinger, H. Color Chemistry. Synthesis, and Applications of Organic Dyes and Pigments; Wiley-VCH: Weinheim, 2003.
  3. Griffiths, J. Colour and Constitution of Organic Molecules; Academic Press: London, 1976.
  4. Kumar, G. S.; Neckers, D. C. Chem. Rev. 1989, 89, 1915. https://doi.org/10.1021/cr00098a012
  5. Yagai, S.; Karatsu, T.; Kitamura, A. Chem. Eur. J. 2005, 11, 4054. https://doi.org/10.1002/chem.200401323
  6. Zheng, Z.; Xu, J.; Sun, Y.; Zhou, J.; Chen, B.; Zhang, Q.; Wang, K. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 3210. https://doi.org/10.1002/pola.21398
  7. Guo, B.; Su, W.; Jia, Y.; Li, Z.; Zhang, Q.; Wang, G. Phys. Stat. Sol. (b) 2005, 242, 1081. https://doi.org/10.1002/pssb.200402113
  8. Yesodha, S. K.; Pillai, C. K. S.; Tsutsumi, N. Prog. Polym. Sci. 2004, 29, 45. https://doi.org/10.1016/j.progpolymsci.2003.07.002
  9. Eich, M.; Wendorff, J. H.; Reck, B.; Ringsdorf, H. Macromol. Chem. Rapid Commun. 1987, 8, 59. https://doi.org/10.1002/marc.1987.030080111
  10. Berg, R. H.; Hvilsted, S.; Ramanujam, P. S. Nature 1996, 383, 505. https://doi.org/10.1038/383505a0
  11. Natansohn, A.; Rochon, P.; Gosselin, J.; Xie, S. Macromolecules 1992, 25, 2268. https://doi.org/10.1021/ma00034a031
  12. Astrand, P.-O.; Ramanujam, P. S.; Hvilsted, S.; Bak, K. L.; Sauer, S. P. A. J. Am. Chem. Soc. 2000, 122, 3482. https://doi.org/10.1021/ja993154r
  13. Natansohn, A.; Rochon, P. Chem. Rev. 2002, 102, 4139. https://doi.org/10.1021/cr970155y
  14. Wu, S.; Duan, S.; Lei, Z.; Su, W.; Zhang, Z.; Wang, K.; Zhang, Q. J. Mater. Chem. 2010, 5202.
  15. Helene, M. P.; Faur, C.; Cloirec, P. L. Chemosphere 2007, 77, 887.
  16. Jacquemin, D.; Perpète, E. A.; Ciofini, I.; Adamo, C. Acc. Chem. Res. 2009, 42, 326. https://doi.org/10.1021/ar800163d
  17. Zhang, C.-R.; Liu, Z.-J.; Chen, Y.-H.; Chen, H.-S.; Wu, Y.-Z.; Yuan, L.-H. J. Mol. Struct. (THEOCHEM) 2009, 899, 86. https://doi.org/10.1016/j.theochem.2008.12.015
  18. Zhang, C.-R.; Liu, Z.-J.; Chen, Y.-H.; Chen, H.-S.; Wu, Y.-Z.; Feng, W.-J.; Wang, D.-B. Curr. Appl. Phys. 2010, 10, 77. https://doi.org/10.1016/j.cap.2009.04.018
  19. Xu, J.; Zhang, H.; Wang, L.; Liang, G.; Wang, L.; Shen, X.; Xu, W. Monatsh. Chem. 2010, 141, 549. https://doi.org/10.1007/s00706-010-0298-0
  20. Xu, J.; Wang, L.; Liang, G.; Bai, Z.; Wang, L.; Xu, W.; Shen, X. Bull. Korean Chem. Soc. 2010, 31, 2531. https://doi.org/10.5012/bkcs.2010.31.9.2531
  21. Devillers, J.; Balaban, A. T., Eds.; Topological Indices and Related Descriptors in QSAR and QSPR; Gordon and Breach: The Netherlands, 1999.
  22. Karelson, M. Molecular Descriptors in QSAR/QSPR; Wiley- Interscience: New York, 2000.
  23. Yao, X. J.; Wang, Y. W.; Zhang, X. Y.; Zhang, R. S.; Liu, M. C.; Hu, Z. D.; Fan, B. T. Chemom. Intell. Lab. Syst. 2002, 62, 217. https://doi.org/10.1016/S0169-7439(02)00017-5
  24. Xu, J.; Chen, B.; Zhang, Q.; Guo, B. Polymer 2004, 45, 8651. https://doi.org/10.1016/j.polymer.2004.10.057
  25. Xu, J.; Guo, B.; Chen, B.; Zhang, Q. J. Mol. Model. 2005, 12, 65. https://doi.org/10.1007/s00894-005-0006-x
  26. Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics; Wiley-VCH: Weinheim, 2009.
  27. Liu, H.; Wen, Y.; Luan, F.; Gao, Y.; Li, X. Anal. Chim. Acta 2009, 649, 52. https://doi.org/10.1016/j.aca.2009.07.013
  28. Fayet, G.; Jacquemin, D.; Wathelet, V.; Perpete, E. A.; Rotureau, P.; Adamo, C. J. Mol. Graphics. Modell. 2010, 28, 465. https://doi.org/10.1016/j.jmgm.2009.11.001
  29. Xu, J.; Zheng, Z.; Chen, B.; Zhang, Q. QSAR Comb. Sci. 2006, 25, 372. https://doi.org/10.1002/qsar.200530143
  30. Xu, J.; Zhang, H.; Wang, L.; Liang, G.; Wang, L.; Shen, X.; Xu, W. Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 2010, 76, 239. https://doi.org/10.1016/j.saa.2010.03.027
  31. Xu, J.; Zhang, H.; Wang, L.; Liang, G.; Wang, L.; Shen, X. Mol. Simul. 2011, 37, 1. https://doi.org/10.1080/08927022.2010.506513
  32. Hypercube, Inc.: Gainesville, 2000.
  33. Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M., TALETE srl: Milan, 2006.
  34. Liu, H.; Gramatica, P. Bioorgan. Med. Chem. 2007, 15, 5251. https://doi.org/10.1016/j.bmc.2007.05.016
  35. Kemmrd, R. W.; Stone, L. A. Technometrics 1969, 11, 137. https://doi.org/10.2307/1266770
  36. Tropsha, A.; Gramatica, P.; Gombar, V. K. QSAR Comb. Sci. 2003, 22, 69. https://doi.org/10.1002/qsar.200390007
  37. Wu, W.; Walczak, B.; Massart, D. L.; Heuerding, S.; Erni, F.; Last, I. R.; Prebble, K. A. Chemom. Intell. Lab. Syst. 1996, 33, 35. https://doi.org/10.1016/0169-7439(95)00077-1
  38. Holder, A. J.; Yourtee, D. M.; White, D. A.; Glaros, A. G.; Smith, R. J. Comput. Aid. Mol. Des. 2003, 17, 223. https://doi.org/10.1023/A:1025382226037
  39. Golbraikh, A.; Tropsha, A. J. Mol. Graph. Model. 2002, 20, 269. https://doi.org/10.1016/S1093-3263(01)00123-1
  40. Shen, M.; Beguin, C.; Golbraikh, A.; Stables, J. P.; Kohn, H.; Tropsha, A. J. Med. Chem. 2004, 47, 2356. https://doi.org/10.1021/jm030584q
  41. Atkinson, A. Plots, Transformations, and Regression; Clarendon Press: Oxford, UK, 1985.
  42. Ramsey, L. F.; Schafer, W. D. The Statistical Sleuth; Wadsworth Publishing Company: USA, 1997.
  43. Zheng, F.; Bayram, E.; Sumithran, S. P.; Ayers, J. T.; Zhan, C.-G.; Schmitt, J. D.; Dwoskin, L. P.; Crooks, P. A. Bioorg. Med. Chem. 2006, 14, 3017. https://doi.org/10.1016/j.bmc.2005.12.036
  44. Guha, R.; Jurs, P. C. J. Chem. Inf. Model. 2005, 45, 800. https://doi.org/10.1021/ci050022a
  45. Consonni, V.; Todeschini, R.; Pavan, M. J. Chem. Inf. Comput. Sci. 2002, 42, 682. https://doi.org/10.1021/ci015504a
  46. Consonni, V.; Todeschini, R.; Pavan, M.; Gramatica, P. J. Chem. Inf. Comput. Sci. 2002, 42, 693. https://doi.org/10.1021/ci0155053
  47. Gasteiger, J.; Sadowski, J.; Schuur, J.; Selzer, P.; Steinhauer, L.; Steinhauer, V. J. Chem. Inf. Comput. Sci. 1996, 36, 1030. https://doi.org/10.1021/ci960343+
  48. Schuur, J.; Selzer, P.; Gasteiger, J. J. Chem. Inf. Comput. Sci. 1996, 36, 334. https://doi.org/10.1021/ci950164c
  49. Saiz-Urra, L.; Gonzalez, M. P.; Teijeira, M. Bioorg. Med. Chem. 2006, 14, 7347. https://doi.org/10.1016/j.bmc.2006.05.081

Cited by

  1. Estimation of photolysis half-lives of dyes in a continuous-flow system with the aid of quantitative structure-property relationship vol.8, pp.5, 2014, https://doi.org/10.1007/s11783-014-0680-y
  2. Chemometric modeling to predict aquatic toxicity of benzene derivatives in Pimephales Promelas vol.27, pp.3, 2016, https://doi.org/10.1108/MEQ-05-2015-0082
  3. Qualitative and quantitative structure-activity relationship modelling for predicting blood-brain barrier permeability of structurally diverse chemicals vol.26, pp.2, 2011, https://doi.org/10.1080/1062936x.2014.994562
  4. QSPR modeling of absorption maxima of dyes used in dye sensitized solar cells (DSSCs) vol.265, pp.None, 2011, https://doi.org/10.1016/j.saa.2021.120387