DOI QR코드

DOI QR Code

Damage Detecion of CFRP-Laminated Concrete based on a Continuous Self-Sensing Technology

셀프센싱 상시계측 기반 CFRP보강 콘크리트 구조물의 손상검색

  • 김영진 (토지주택연구원) ;
  • 박승희 (성균관대학교 사회환경시스템공학과) ;
  • 진규남 (토지주택연구원) ;
  • 이창길 (성균관대학교 건설환경시스템공학과)
  • Received : 2011.05.03
  • Accepted : 2011.07.18
  • Published : 2011.10.30

Abstract

This paper reports a novel structural health monitoring (SHM) technique for detecting de-bonding between a concrete beam and CFRP (Carbon Fiber Reinforced Polymer) sheet that is attached to the concrete surface. To achieve this, a multi-scale actuated sensing system with a self-sensing circuit using piezoelectric active sensors is applied to the CFRP laminated concrete beam structure. In this self-sensing based multi-scale actuated sensing, one scale provides a wide frequency-band structural response from the self-sensed impedance measurements and the other scale provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. To quantify the de-bonding levels, the supervised learning-based statistical pattern recognition was implemented by composing a two-dimensional (2D) plane using the damage indices extracted from the impedance and guided wave features.

본 논문에서는 콘크리트 보의 표면에 부착된 CFRP (Carbon Fiber Reinforced Plastic) 보강재의 박리 손상 진단을 위한 구조 건전성 모니터링 기법을 소개한다. 이를 위해 압전 능동 센서를 이용한 셀프센싱 회로 기반의 다중 스케일 계측 기법이 적용되었다. 다중 스케일 계측 시스템으로부터 셀프센싱 임피던스 계측을 통한 주파수 영역 구조 응답 및 셀프센싱 유도 초음파 계측을 통한 특정 주파수에서의 구조 응답을 획득할 수 있다. 박리 손상의 정량화를 위하여 임피던스 및 유도 초음파 신호로부터 추출된 손상 특성을 이용하여 2차원 손상 지수를 도출하고 이를 지도학습 기반 확률론적 패턴인식 기법에 적용하였다.

Keywords

References

  1. Akuthota, B., D.Hughes, R. Zoughi, J. Myers, and A. Nanni (2004), "Near-Field Microwave Detection of Disbond in Carbon Fiber Reinforced Polymer Composites Used for Strengthening Cement-Based Structures and Disbond Repair Verification", Journal of Materials in Civil Engineering, 16(6): 540-546. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(540)
  2. Ansari, F. (2005), "Fiber Optic Health Monitoring of Civil Structures using Long Gage and Acoustic Sensors", Smart Materials and Structures, 14(3): S1-S7. https://doi.org/10.1088/0964-1726/14/3/001
  3. ANSI/IEEE Std. 176 (1987), IEEE Standard on piezoelectricity, The Institute of Electrical and electronics Engineers, Inc., New York, USA.
  4. Ekenel, M., V. Stephen, J. J. Myers, and R. Zoughi (2004), "Microwave NDE of RC Beams Strengthened with CFRP Laminates Containing Surface Defects and Tested Under Cyclic Loading", Proc., 16th World Conference on Nondestructive Testing, Montreal, Canada. August 30- September 3.
  5. Feng, M. Q., F. Flaviis, and Y. J. Kim (2000), "Use of Microwaves for Damage Detection of Fiber Reinforced Polymer- Wrapped Concrete Structure", Journal of Engineering Mechanics, 128(2): 172-183.
  6. Giurgiutiu, V., K. A. Harries, M. F. Petrou, J. Bost, and Quattlebaum, J. (2003), "Disbond Detection with Piezoelectric Wafer Active Sensors in RC Structures Strengthened with FRP Composite Overlays", Earthquake Engineering and Engineering Vibration, 2(2): 213-224. https://doi.org/10.1007/s11803-003-0005-9
  7. Giurgiutiu, V., A. Zagrai, and J. J. Bao (2002), "Piezoelectric Wafer Embedded Active Sensors for aging Aircraft Structural Health Monitoring", Structural Health Monitoring, 1(1): 41-61. https://doi.org/10.1177/147592170200100104
  8. Kim, D. K., J. J. Lee, J. H. Lee, and S. K. Chang (2005), "Application of Probabilistic Neural Networks for Prediction of Concrete Strength", Journal of Materials in Civil Engineering, 17(3): 353-362. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:3(353)
  9. Lee, S. J. and H. Sohn (2006), "Active Self-sensing Scheme Development for Structural Health Monitoring", Smart Materials and Structures, 15(6): 1734-1746. https://doi.org/10.1088/0964-1726/15/6/028
  10. Levar, J. and H. Hamilton (2003), "Nondestructive Evaluation of Carbon Fiber-Reinforced Polymer-Concrete Bond Using Infrared Thermography", ACI Materials Journal, 100(1): 63-72.
  11. Liang, C., F. P. Sun, and C. A. Rogers, (1994), "Coupled Electromechanical Analysis of Adaptive Material Systems - Determination of the Actuator Power Consumption and System Energy Transfer", Journal of Intelligent Material Systems and Structures, 5(1): 1 2-20. https://doi.org/10.1177/1045389X9400500102
  12. Mirmiran, A., M. Shahawy and H. Echary (1999), "Acoustic Emission Monitoring of Hybrid FRP-Concrete Columns", Journal of Engineering Mechanics, 125(8): 899-905. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:8(899)
  13. Mirmiran, A. and Y. Wei (2001), "Damage Assessment of FRPEncased Concrete Using Ultrasonic Pulse Velocity", Journal of Engineering Mechanics, 127(2): 126-135. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:2(126)
  14. Specht, D. F. (1990), "Probabilistic neural networks", Neural Networks, 3: 109-118. https://doi.org/10.1016/0893-6080(90)90049-Q
  15. Sun, F. P., C. Liang, and C. A. Rogers (1994), "Experimental Modal Testing using Piezoceramic Patches as Collocated Sensors - Actuators", Proceedings of the 1994 SEM Spring Conference and Exhibits, Baltimore, MI.
  16. Sun, F. P., Z. Chaudhry, C. A. Rogers, and M. Majmundar (1995), "Automated Real - Time Structure Health Monitoring Via Signature Pattern Recognition", Proceedings of SPIE North American Conference on Smart Structures and Materials, SanDiego, CA.