DOI QR코드

DOI QR Code

Toxicological Characterization of Phthalic Acid

  • Bang, Du-Yeon (Laboratory of Toxicology, College of Pharmacy, Sungkyunkwan University) ;
  • Lee, In-Kyung (Laboratory of Toxicology, College of Pharmacy, Sungkyunkwan University) ;
  • Lee, Byung-Mu (Laboratory of Toxicology, College of Pharmacy, Sungkyunkwan University)
  • Received : 2011.10.02
  • Accepted : 2011.10.25
  • Published : 2011.12.01

Abstract

There has been growing concern about the toxicity of phthalate esters. Phthalate esters are being used widely for the production of perfume, nail varnish, hairsprays and other personal/cosmetic uses. Recently, exposure to phthalates has been assessed by analyzing urine for their metabolites. The parent phthalate is rapidly metabolized to its monoester (the active metabolite) and also glucuronidated, then excreted. The objective of this study is to evaluate the toxicity of phthalic acid (PA), which is the final common metabolic form of phthalic acid esters (PAEs). The individual PA isomers are extensively employed in the synthesis of synthetic agents, for example isophthalic acid (IPA), and terephthalic acid (TPA), which have very broad applications in the preparation of phthalate ester plasticizers and components of polyester fiber, film and fabricated items. There is a broad potential for exposure by industrial workers during the manufacturing process and by the general public (via vehicle exhausts, consumer products, etc). This review suggests that PA shows in vitro and in vivo toxicity (mutagenicity, developmental toxicity, reproductive toxicity, etc.). In addition, PA seems to be a useful biomarker for multiple exposure to PAEs in humans.

Keywords

References

  1. Agarwal, D.K., Lawrence, W.H., Nunez, L.J. and Autian, J. (1985). Mutagenicity evaluation of phthalic acid esters and metabolites in Salmonella typhimurium cultures. J. Toxicol. Environ. Health, 16, 61-69. https://doi.org/10.1080/15287398509530719
  2. Albro, P.W., Tomas, R. and Fishbein, L. (1973). Metabolism of diethylhexyl phthalate by rats. Isolation and characterization of the urinary metabolites. J. Chromatogr., 76, 321-330. https://doi.org/10.1016/S0021-9673(01)96915-8
  3. Albro, P.W. and Thomas, R.O. (1973). Enzymatic hydrolysis of di-(2-ethylhexyl) phthalate by lipases. Biochim. Biophys. Acta. Biochim., 306, 380-390. https://doi.org/10.1016/0005-2760(73)90176-8
  4. Albro, P.W. and Moore, B. (1974). Identification of the metabolites of simple phthalate diesters in rat urine. J. Chromatogr., 94, 209-218. https://doi.org/10.1016/S0021-9673(01)92368-4
  5. Albro, P.W., Jordan, S., Corbett, J.T. and Schroeder, J.L. (1984). Determination of total phthalate in urine by gas chromatography. Anal. Chem., 56, 247-250. https://doi.org/10.1021/ac00266a029
  6. Albro, P.W. (1987). The biochemical toxicology of di-(2-ethylhexyl) and related phthalates: Testicular atrophy and hepatocarcinogenesis. Rev. Biochem. Toxicol., 8, 73-119.
  7. Amoco Co. (1970). Fifteen Week Oral Toxicity of TerePA. Albino Rats. Conducted by Toxicological Evaluations. LSL Study#1358.
  8. Amoco Co. (1975). Acute Oral Toxicity Study of TerePA in Rats. Conducted by Industrial Bio-Test Laboratories, Inc. IBT Study #601-06339.
  9. Amoco Co. (1990) Acute Oral Toxicity Study of TerePA in Rats. Conducted by IIT Research Institute. IITRI Study #1557.
  10. ATSDR. (1995). Toxicological profile for diethyl phthalate (DEP). Agency for Toxic Substances and Disease Registry, Atlanta, GA. Available online via. http://www.atsdr.cdc.gov/toxpro.les.
  11. ATSDR. (1997). Toxicological profile for di-n-octyl phthalate (DNOP). Agency for Toxic Substances and Disease Registry, Atlanta, GA. Available online via. http://www.atsdr.cdc.gov/toxpro.les/tp95.html.
  12. ATSDR. (2000). Toxicological pro.le for di(2-ethylhexyl)phthalate (DEHP).. U.S. Department of Health and Human Services, Public Health Service, ATSDR, Atlanta GA. Available online via http://www.atsdr.cdc.gov/toxpro.les/.
  13. ATSDR. (2001). Toxicological profile for di-n-butyl phthalate (DBP). Agency for Toxic Substances and Disease Registry, Atlanta, GA.
  14. ATSDR. (2002). Toxicological Profile for Di(2-ethylhexyl)phthalate (DEHP). Atlanta, GA : Agency for Toxic Substances and Disease Registry, Atlanta, GA.
  15. Barr, D.B., Silva, M.J., Kato, K., Reidy, J.A., Malek, N.A., Hurtz, D., Sadowski, M., Needham, L.L. and Calafat, A.M. (2003). New directions in the quantitation of human exposure to phthalates. Environ. Health. Perspect., Online, 24 February 2003, DOI 10.1289/ ehp.6074.
  16. Bauer, M.J. and Herrmann, R. (1997). Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. Sci. Total Environ., 208, 49-57. https://doi.org/10.1016/S0048-9697(97)00272-6
  17. BIBRA working group. (1989). Ortho-PA and its sodium and potassium salts. Toxicity profile. The British Industrial Biological Research Association. p.5.
  18. Blount, B.C., Silva, M.J., Caudill, S.P., Needham, L.L., Pirkle, J.L., Sampson, E.J., Lucier, G.W., Jackson, R.J. and Brock, J.W. (2000). Levels of seven urinary phthalate metabolites in a human reference population. Environ. Health Perspect., 108, 979-982.
  19. Boekelheide, K. (1993). Sertoli cell toxicants. In The Sertoli Cell (L.D. Russell and M.D. Griswold, Eds.), p.551-575. Cache River Press, Clearwater, FL.
  20. Boots, S.G., Franklin, M.A., Dunlavey, B., Costello, J., Lipsitz, C., Boots, M.R. and Rogers, K.S. (1976). Synthesis of 5-substituted isoPAs and competitive inhibition studies with bovine liver glutamate dehydrogenase. Proc. Soc. Exp. Biol. Med., 151, 316-320. https://doi.org/10.3181/00379727-151-39200
  21. Calandra, J.C. (1975). IBT No. 601-06339 - Acute Toxicity Studies with Five Test Materials - P.O.No. 99-8-4140. Industrial BIO-TEST Laboratories, Inc., Northbrook, IL.
  22. Carozzi, S., Nasini, M.G., Schelotto, C., Caviglia, P.M., Santoni, O. and Pietrucci, A. (1993). A biocompatibility study on peritoneal dialysis solution bags for CAPD. Adv. Peritoneal Dial., 9, 138-142.
  23. Chin, T.Y., Tyl, R.W., Popp, J.A. and Heck, H.D. (1981). Chemical urolithiasis: 1. Characteristics of bladder stone induction by terePA and dimethyl terephthalate in weanling Fischer-344 rats. Toxicol. Appl. Pharmacol., 58, 307-321. https://doi.org/10.1016/0041-008X(81)90435-X
  24. CIIT. (1983). Chronic Dietary Administration of TerePA. CIIT Docket 20124.
  25. Chester, E.H., Schwartz, H.J., Payne, C.B. Jr. and Greenstein, S. (1977). Phthalic anhydride asthma. Clin. Allergy, 7, 15-20. https://doi.org/10.1111/j.1365-2222.1977.tb01419.x
  26. Cooper, R.L. and Kavlock, R.J. (1997). Endocrine disruptors and reproductive development: a weight-of-evidence overview. J. Endocrinol., 152, 159-166. https://doi.org/10.1677/joe.0.1520159
  27. Cui, L., Shi, Y., Dai, G., Pan, H., Chen, J., Song, L., Wang, S., Chang, H.C., Sheng, H. and Wang, X. (2006). Modification of N-Methyl-N-Nitrosourea initiated bladder carcinogenesis in Wistar rats by terephthalic acid. Toxicol. Appl. Pharmacol., 210, 24-31. https://doi.org/10.1016/j.taap.2005.06.008
  28. Duty, S.M., Silva, M.J., Barr, D.B., Brock, J.W., Ryan, L., Chen, Z., Herrick, R.F., Christiani, D.C. and Hauser, R. (2003). Phthalate exposure and human semen parameters. Epidemiology, 14, 269-277.
  29. Ema, M., Miyawaki, E., Harazono, A. and Kawashima, K. (1997). Developmental toxicity evaluation of phthalic acid, one of the metabolites of phthalic acid esters, in rats. Toxicol. Lett., 93, 109-115. https://doi.org/10.1016/S0378-4274(97)00078-7
  30. Ema, M. and Miyawaki, E. (2001). Effects of monobutyl phthalate on reproductive function in pregnant and pseudopregnant rats. Reprod. Toxicol., 15, 261-267. https://doi.org/10.1016/S0890-6238(01)00131-9
  31. Ema, M. and Miyawaki, E. (2002). Effects on development of the reproductive system in male offspring of rats given butyl benzyl phthalate during late pregnancy. Reprod. Toxicol., 16, 71-76. https://doi.org/10.1016/S0890-6238(01)00200-3
  32. Ema, M., Miyawaki, E., Hirose, A. and Kamata, E. (2003). Decreased anogenital distance and increased incidence of undescended testes in fetuses of rats given monobenzyl phthalate, a major metabolite of butyl benzyl phthalate. Reprod. Toxicol., 17, 407-412. https://doi.org/10.1016/S0890-6238(03)00037-6
  33. Forsberg, K., et al. (1997). Quick selection guide to chemical protective clothing. 3rd ed. Van Nostrand Reinhold.
  34. Gray, L.E., Ostby, J., Furr, J., Price, M., Veeramachaneni, D.N.R. and Parks, L. (2000). Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol. Sci., 58, 350-365. https://doi.org/10.1093/toxsci/58.2.350
  35. Gray, T.J. and Beamand, J.A. (1984). Effect of some phthalate esters and other testicular toxins on primary cultures of testicular cells. Food Chem. Toxicol., 22, 123-131. https://doi.org/10.1016/0278-6915(84)90092-9
  36. Gibson, J.E. (1982). A ninety day study of terephthalic acidinduced urolithiasis and reproductive performance in Wistar and CD rats. Research Triangle Institute Experimental Pathology Laboratories, Inc. Chemical Industry Institute of Toxicology.
  37. GISAAA. (1967). Gigiena i Sanitariya. For English translation. See HYSAAV. 32, 12.
  38. Grigas, E.O., Ruiz, R. and Ariado, D.M. (1971). Cardiopulmonary effects of antimalarial drugs. IV. Terephthalic acid and its dihydroxamic derivative. Toxicol. Appl.Pharmacol., 18, 469-486. https://doi.org/10.1016/0041-008X(71)90139-6
  39. Guess, W.L., Jacob, J. and Autian, J. (1967). A study of polyvinyl chloride blood bag assemblies I Alteration or contamination of ACD solutions. Drug Intelligence, 1, 120-127. https://doi.org/10.1177/106002806700100403
  40. Hall, I.H., Wong, O.T., Reynolds, D.J., Simlot, R. and Chang, J.J. (1993). Terephthalic Acid in Sprague-Dawley rats as a hypolipidemic agent. Arch. Pharm., 326, 5-13. https://doi.org/10.1002/ardp.19933260104
  41. Heindel, J.J. and Powell, C.J. (1992). Phthalate ester effects on rat Sertoli cell function-in vitro-effects of phthalate side-chain and age of animal. Toxicol. Appl. Pharmacol., 115, 116-123. https://doi.org/10.1016/0041-008X(92)90374-2
  42. Hoshi, A., Yanai, R. and Kuretani, K. (1967). Effect of terephthalic acid upon the sulfadimethoxine content of blood plasma. Chem. Pharm. Bull., (Tokyo), 15, 1138-1144. https://doi.org/10.1248/cpb.15.1138
  43. Hoshi, A. and Kuretani, K. (1967). Metabolism of terephthalic acid. 3. Absorption of terephthalic acid from the gastrointestinal tract and detection of its metabolites. Chem. Pharm. Bull., 15, 1979-1984. https://doi.org/10.1248/cpb.15.1979
  44. Hoshi, A., Yanai, R. and Kuretani, K. (1968).Toxicity of terephthalic acid. Chem. Pharm. Bull., 16, 1655-1660. https://doi.org/10.1248/cpb.16.1655
  45. Hoshi, A. and Kuretani, K. (1968). Distribution of terephthalic acid in tissues. Chem. Pharm. Bull., 16, 131-135. https://doi.org/10.1248/cpb.16.131
  46. Hoppin, J.A., Brock, J.W., Davis, B.J. and Baird, D.D. (2002). Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ. Health Perspect., 110, 515-518. https://doi.org/10.1289/ehp.02110515
  47. Huber, W.W., Grasl-Kraupp, B. and Schulte-Hermann, R. (1996). Hepatocarcinogenic potential of di(2-ethylhexyl)phthalate in rodents and its implications on human risk. Crit. Rev. Toxicol., 26, 365-481. https://doi.org/10.3109/10408449609048302
  48. IITRI, IIT Research Institute. (1988). Four-week Inhalation Toxicity Study of Isophthalic acid in Rats. Study No. 1301.
  49. IITRI, IIT Research Institute. (1990). Acute Oral Toxicity Study of Isophthalic acid in Rats. Study No. 1553.
  50. Industrial BIO-TEST Lab. Inc. (1958). Report to Amoco Corporation Range-Finding Toxicity Studies on There Test Materials.
  51. Jaeger, R.J. and Rubin, R.J. (1970a). Plasticizers from plastic devices : Excretion, metabolism and accumulation by biological systems. Science, 178, 460-462.
  52. Jaeger, R.J. and Rubin, R.J. (1970b). Contamination of blood stored in plastic packs. Lancet, 2, 151.
  53. Japan Environment Agency. (1998). Strategic Programs on Environmental Endocrine Disruptors '98 (SPEED '98). http://www.env.go.jp/en/chemi/ed/speed98/sp98.html.
  54. Jha, A.M., Singh, A.C. and Bharti, M. (1998). Germ cell mutagenicity of phthalic acid in mice. Mutat. Res., 422, 207-212. https://doi.org/10.1016/S0027-5107(98)00151-1
  55. Kato, K., Silva, M.J., Needham, L.L. and Calafat, A.M. (2005). Determination of total phthalates in urine by isotope-dilution liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 814, 355-360. https://doi.org/10.1016/j.jchromb.2004.10.056
  56. Kawaguchi, H., Pilbeam, C.C., Harrison, J.R. and Raisz, L.G. (1995). The role of prostaglandins in the regulation of bone metabolism. Clin. Orthop. Relat. Res., 313, 36-46.
  57. Li, Z., Zhang, C., Wang, K., Gu, L., Shi, A., Gong, N., Xu, X., He, D., Xu, J. and Wang, X. (1999). [Changes in the pulmonary function of factory workers exposure to terephthalic acid]. Wei Sheng Yan Jiu, 28, 1-3.
  58. Maccia, C.A., Bernstein, I.L., Emmet, E.A. and Broaks, S.M. (1976). In vitro demonstration of specific IgE in phthalic anhydride hypersensitivity. Am. Rev. Resp. Disease, 113, 701-704.
  59. Marhold, J. (1986). Preheld Prumyslove Toxikologie; Organicke Latky. Prague, Czechoslovakia, Avecenum, 317.
  60. Masui, T., Shirai, T., Imaida, K., Uwagawa, S. and Fukushima, S. (1988). Effects of urinary crystals induced by acetazolamide, uracil, and diethylene glycol on urinary bladder carcinogenesis in N-butyl-N-(4-hydroxybutyl)nitrosamine-initiated rats. Toxicol. Lett., 40, 119-126. https://doi.org/10.1016/0378-4274(88)90152-X
  61. Mayer, F.L., Stalling, D.L. and Johnson, J.L. (1972). Phthalate esters as environmental contaminants. Nature, 238, 411-413. https://doi.org/10.1038/238411a0
  62. McLachlan, J.A. (2001). Environmental signaling: what embryos and evolutionteach us about endocrine disrupting chemicals. Endocr. Rev., 22, 319-341. https://doi.org/10.1210/er.22.3.319
  63. Mettang, T., Alscher, D.M., Pauli-Magnus, C., Dunst, R., Kuhlmann, U. and Rettenmeier, A.W. (1999). Phthalic acid is the main metabolite of the plasticizer di(2-ethylhexyl) phthalate in peritoneal dialysis patients. Adv. Perit. Dial., 15, 229-233.
  64. Mettang, T., Pauli-Magnus, C., Alscher, D.M., Kirchgessner, J., Wodarz, R., Rettenmeier, A.W. and Kuhlmann, U. (2000). Influence of plasticizer-free CAPD bags and tubings on serum, urine, and dialysate levels of phthalic acid esters in CAPD patients. Perit. Dial. Int., 20, 80-84.
  65. Moffitt, A.E., Clary, J.J., Lewis, T.R., Blanck, M.D. and Perone, V.B. (1975). Absorption, distribution, and excretion of terePA and dimethylterephthalate. Amer. Ind. Hyg. Assoc. J., 36, 633-641. https://doi.org/10.1080/0002889758507303
  66. Mylchreest, E., Cattley, R.C. and Foster, P.M.D. (1998). Male reproductive tract malformations in rats following gestational and lactational exposure to di(n-butyl) phthalate: an antiandrogenic mechanism? Toxicol. Sci., 43, 47-60. https://doi.org/10.1093/toxsci/43.1.47
  67. Mylchreest, E., Sar, M., Cattley, R.C. and Foster, P.M.D. (1999). Disruption of androgen-regulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicol. Appl. Pharmacol., 156, 81-95. https://doi.org/10.1006/taap.1999.8643
  68. Mylchreest, E., Wallace, D.G., Cattley, R.C. and Foster, P.M.D. (2000). Dose-dependent alterations in androgen-regulated male reproductive development in rats exposed to di(n-butyl) phthalate during late gestation. Toxicol. Sci., 55, 143-151. https://doi.org/10.1093/toxsci/55.1.143
  69. NIOSH, National Institute of Occupational Safety and Health. (1981). Occupational health guideline for phthalic anhydride. DHHS(NIOSH) Publication No 81-123, US Department of Labor. Occupational Safety and Health Administration.
  70. Needham, L.L., Patterson, D.G., Barr, D.B., Grainger, J. and Calafat, A.M. (2005). Uses of speciation techniques in biomonitoring for assessing human exposure to organic environmental chemicals. Anal. Bioanal. Chem., 381, 397-404. https://doi.org/10.1007/s00216-004-2975-5
  71. Oishi, S. and Hiraga, K. (1980). Testicular Atrophy Induced by phthalic acid Esters: Effect on Testosterone and Zinc Concentrations. Toxicol. Appl. Pharmacol., 53, 35-41. https://doi.org/10.1016/0041-008X(80)90378-6
  72. Oishi, S. and Hiraga, K. (1982). Effects of Monoesters of Ophthalic acid on serum lipid composition of rats. Toxicol. Lett., 14, 79-84. https://doi.org/10.1016/0378-4274(82)90012-1
  73. Okubo, T., Suzuki, T., Yokoyama, Y., Kano, K. and Kano, I. (2003). Estimation of estrogenic and anti-estrogenic activities of some phthalate diesters and monoesters by MCF-7 cell proliferation assay in vitro. Biol. Pharm. Bull., 26, 1219-1224. https://doi.org/10.1248/bpb.26.1219
  74. Parks, L.G., Ostby, J.S., Lambright, C.R., Abbott, B.D., Klinefelter, G.R., Barlow, N.J. and Gray, L.E. (2000). The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol. Sci., 58, 339-349. https://doi.org/10.1093/toxsci/58.2.339
  75. Pauli, G., Bessot, J.C., Kopferschmitt, M.C., Lingot, G., Wending, R., Ducos, P. and Limasset, J.C. (1980). Meat wrapper's asthma: identification of the causal agent. Clin. Allergy, 10, 263-269. https://doi.org/10.1111/j.1365-2222.1980.tb02106.x
  76. Pavan, B., Biondi, C., Ferretti, M.E., Lunghi, L. and Paganetto, G. (2001). Phthalic acid mimics 17beta-estradiol actions in WISH cells. Toxicol. Lett., 118, 157-164. https://doi.org/10.1016/S0378-4274(00)00279-4
  77. Perteson, E.H., Hendrix, W.L. and Braddy.L.D. (1959). The potentiation of erythromycin and oxytetracycline activity in birds by means of terephthalic acid. Poultry Sci., 38, 235-237. https://doi.org/10.3382/ps.0380235
  78. Pfaffli, P. (1986). Phthalic acid excretion as an indicator of exposure to phthalic anhydride in the work atmosphere. Int. Arch. Occup. Environ. Health, 58, 209-216. https://doi.org/10.1007/BF00432103
  79. Phillips, B.J., James, T.E. and Gangolli, S.D. (1982). Genotoxicity studies of di(2-ethylhexyl)phthalate and its metabolites in CHO cells. Mutat. Res., 102, 297-304. https://doi.org/10.1016/0165-1218(82)90139-2
  80. Pilbeam, C.C., Raisz, L.G., Voznesensky, O., Alander, C.B., Delman, B.N. and Kawaguchi, H. (1995). Autoregulation of inducible prostaglandin G/H synthase in osteoblastic cells by prostaglandins. J. Bone Miner. Res., 10, 406-414.
  81. Price, K.E. and Zolli, Z. (1958). The influence of terephthalic acid on oxytetracycline serum levels in chicken studies on mode of action. I. Avian Diseases, 157, 157-169.
  82. Raisz, L.G. (1995). Physiologic and pathologic roles of prostagladins and other eicosanoids in bone metabolism. J. Nutr., 125, 2024S-2027S. https://doi.org/10.1093/jn/125.suppl_7.2024S
  83. Raisz, L.G., Fall, P.M., Gabbitas, B.Y., McCarthy, T.L., Kream, B.E. and Canalis, E. (1993). Effects of prostaglandin E2 on bone formation in cultured fetal rat calvariae: role of insulinlike growth factor-1. Endocrinology, 133, 1504-1510. https://doi.org/10.1210/en.133.4.1504
  84. Richburg, J.H. and Boekelheide, K. (1996). Mono-(2-ethylhexyl) phthalate rapidly alters both Sertoli cell vimentin filaments and germ cell apoptosis in young rat testes. Toxicol. Appl. Pharmacol., 137, 42-50. https://doi.org/10.1006/taap.1996.0055
  85. Roth, V.S. (1999). Rubber industry epidemiology. Occup. Med., 14, 849-856.
  86. Sharman, M., Read, W.A., Castle, L. and Gilbert, J. (1994). Levels of di-(2-ethylhexyl)phthalate and total phthalate esters in milk, cream, butter and cheese. Food Addit. Contam., 11, 375-385. https://doi.org/10.1080/02652039409374236
  87. Sharpe, R.M. (1998). Natural and anthropogenic environmental oestrogens: the scientific basis for risk assessment. Pure Appl. Chem., 70, 1685-1701. https://doi.org/10.1351/pac199870091685
  88. Shemiakin, M.M. and Schukina, L.A. (1944). Experimental corroboration of the mechanism of biological action of quinones of the type of vitamin K. Nature, 154, 513. https://doi.org/10.1038/154513a0
  89. Shintani, H. (1985). Determination of phthalic acid, mono-(2-ethylhexyl) phthalate and di-(2-ethylhexyl)phthalate in human plasma and in blood products. J. Chromatogr., 337, 279-290. https://doi.org/10.1016/0378-4347(85)80041-4
  90. Silva, M.J., Malek, N.A., Hodge, C.C., Reidy, J.A., Kato, K., Barr, D.B., Needham, L.L. and Brock, J.W. (2003). Improved quantitative detection of 11 urinary phthalate metabolites in humans using liquid chromatography-atmospheric pressure chemical ionization .tandem mass spectrometry. J. Chromatogr. B, 789, 393-404. https://doi.org/10.1016/S1570-0232(03)00164-8
  91. Silva, M.J., Barr, D.B., Reidy, J.A., Malek, N.A., Hode, C.C., Caudill, S.P., Brock, J.W., Needham, L.L. and Calafat, A.M. (2004). Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000. Environ. Health Perspect., 112, 331-338.
  92. Silva, M.J., Reidy, J.A., Samandar, E., Herbert, A.R., Needham, L.L. and Calafat, A.M. (2005). Detection of phthalate metabolites in human saliva. Arch. Toxicol., 79, 647-652. https://doi.org/10.1007/s00204-005-0674-4
  93. Staples, C.A., Peterson, D.R., Parkerton, T.F. and Adams, W.J. (1997). The environmental fate of phthalate esters: a literature review. Chemosphere, 35, 667-749. https://doi.org/10.1016/S0045-6535(97)00195-1
  94. Tavares, I.A. and Vine, N.D. (1985). Phthalic acid esters inhibit arachidonate metabolism by rat peritoneal leucocytes. J. Pharm. Pharmacol., 37, 67-68. https://doi.org/10.1111/j.2042-7158.1985.tb04936.x
  95. Thomas, J.A. and Thomas, M.J. (1984). Biological effects of di-(2-ethylhexyl) phthalate and other phthalic acid esters. Crit. Rev. Toxicol., 13, 283-317. https://doi.org/10.3109/10408448409023761
  96. TOLED5. (1997). (Elsevier Science Pub.B.V., POB211, 1000AE Amsterdam, Netherlands) V.1- 1977-. 93, 109. https://doi.org/10.1016/S0378-4274(97)00078-7
  97. http://www.ccohs.ca/products/databases/samples/rtecs.html
  98. Vermeulen, R., Jonsson, B.A., Lindh, C.H. and Kromhout, H. (2005). Biological monitoring of carbon disulphide and phthalate exposure in the contemporary rubber industry. Int. Arch. Occup. Environ. Health, 78, 663-669. https://doi.org/10.1007/s00420-005-0017-z
  99. Verrett, M.J., Mutchler, M.K., Scott, W.F., Reynaldo, E.F. and McLaughlin. (1969). Teratogenic effects of captan and related compounds in the developing chicken embryo. Ann. N. Y. Acad. Sci., 160, 334-343. https://doi.org/10.1111/j.1749-6632.1969.tb15853.x
  100. Williams, D.T. and Blanchfield, B.J. (1974). Retention, excretion, and metabolism of phthalic acid administered orally to the rat. Bull. Environ. Contam. Toxicol., 12, 109-112. https://doi.org/10.1007/BF01713035
  101. Wolkowski-Tyl, R., Chin, T.Y. and Heck, H.D. (1982). Chemical urolithiasis. III. Pharmacokinetics and transplacental transport of terephthalic acid in Fischer-344 rats. Drug. Metab. Dispos., 10, 486-490.
  102. Wolkowski-Tyl, R. and Chin, T.Y. (1983). Effects of selected therapeutic agents on urolithiasis induced by terephthalic acid in the male weanling Fischer 344 rat. Fundam. Appl. Toxicol., 3, 552-558. https://doi.org/10.1016/S0272-0590(83)80103-1

Cited by

  1. Molecular docking reveals the potential of phthalate esters to inhibit the enzymes of the glucocorticoid biosynthesis pathway vol.37, pp.3, 2016, https://doi.org/10.1002/jat.3355
  2. Synthesis and antibacterial activity of some novel piperazinophanes with an intraannular ester functionality vol.40, pp.11, 2016, https://doi.org/10.1039/C6NJ01956K
  3. Matrix Effects in Detection of Phthalate Esters from Wheat by a Modified QuEChERS Method with GC/MS vol.10, pp.9, 2017, https://doi.org/10.1007/s12161-017-0892-4
  4. Characterization and Identification of Recalcitrant Organic Pollutants (ROPs) in Tannery Wastewater and Its Phytotoxicity Evaluation for Environmental Safety pp.1432-0703, 2017, https://doi.org/10.1007/s00244-017-0490-x
  5. Biotransformation of benzo[a]pyrene by the thermophilic bacterium Bacillus licheniformis M2-7 vol.34, pp.7, 2018, https://doi.org/10.1007/s11274-018-2469-9
  6. -nitrosodiethanolamine (NDELA) in cosmetics vol.81, pp.12, 2018, https://doi.org/10.1080/15287394.2018.1460782
  7. Validation of a QuEChERS-Based Gas Chromatography-Mass Spectrometry (GC-MS) Method for Analysis of Phthalate Esters in Grain Sorghum vol.83, pp.4, 2018, https://doi.org/10.1111/1750-3841.14063
  8. Recent updates on phthalate exposure and human health: a special focus on liver toxicity and stem cell regeneration vol.25, pp.12, 2018, https://doi.org/10.1007/s11356-018-1652-8