DOI QR코드

DOI QR Code

바이스태틱 레이더에서 Range Walk이 보상된 Squint Cross-Range 도플러 프로세싱

Range Walk Compensated Squint Cross-Range Doppler Processing in Bistatic Radar

  • Youn, Jae-Hyuk (Department of Wireless Communications Engineering, Kwangwoon University) ;
  • Kim, Kwan-Soo (Department of Wireless Communications Engineering, Kwangwoon University) ;
  • Yang, Hoon-Gee (Department of Electronics Convergence Engineering, Kwangwoon University) ;
  • Chung, Yong-Seek (Department of Electronics Convergence Engineering, Kwangwoon University) ;
  • Lee, Won-Woo (Department of Electronics & Information Engineering, Korea Military Academy) ;
  • Bae, Kyung-Bin (Agency for Defense Development)
  • 심사 : 2011.11.04
  • 발행 : 2011.11.30

초록

고속의 이동 표적을 탐지하는 경우, 특히 송수신부가 독립적으로 이동하는 바이스태틱 레이더의 경우 표적신호의 레인지 워크(range walk)는 도플러 프로세싱(Doppler processing) 및 표적 탐지를 어렵게 한다. 본 논문에서는 표적 신호에 레인지 워크가 있는 경우 우선 레인지(range) 방향 인터폴레이션(interpolation)을 수행해서 일정한 시간간격으로 샘플링된 표적 성분이 있는 레인지 빈(range bin)을 추출하고, 이어서 도플러 프로세싱을 통한 도플러 정보 추출 알고리즘을 제시한다. 이를 위해 바이스태틱 레이더 환경을 가정하고, 펄스 압축에 의해 레인지 프로세싱 과정을 포함한 도플러 프로세싱 과정을 이론적으로 설명한 후 시뮬레이션을 통하여 제시된 방식의 타당성을 보인다.

Range walk has been a major problem in achieving correct Doppler processing. This frequently occurs when range variation is severe just like in a bistatic radar or in high speed target scenario. This paper presents a range walk compensated range-Doppler processing algorithm applicable to the bistatic radar. In order for the compensation, a range-domain interpolation is applied for range compressed signal so that Doppler processing is performed along the evenly time-spaced range bins that contain target returns. Under a bistatic radar scenario, the proposed algorithm including a range domain pulse compression is mathematically described. Finally, the validity of the algorithm is demonstrated by simulation results showing the superiority of a SCDP(Squint Cross-range Doppler Processing) over an uncompensated Doppler processing.

키워드

참고문헌

  1. M. l. Skolnik, Introduction to Radar System, 3rd E/d, McGraw Hill, 2003.
  2. F. Deng, X. Wang, "Coherent integration detection algorithm research of space debris", CIE'06 International Radar Conference, pp. 1-4, 2006.
  3. G. J. Frazer, S. J. Anderson, "Wigner-ville analysis of HF radar measurements of an accelerating target", Proc. ISSPA '99, Brisbane, Australia, pp. 317- 320, 1999.
  4. D. R. Wehner, Hugh-Resolution Radar, 2nd E/d, Artech House, 1994.
  5. B. D. Carson, E. D. Evens, and S. L. Wilson, "Search radar detection and track with the hough transform, Part I : System concept", IEEE Transactions on Aerospace and Electronic Systems, vol. 30, pp. 102-108, 1994. https://doi.org/10.1109/7.250410
  6. B. D. Carson, E. D. Evens, and S. L. Wilson, "Search radar detection and track with the hough transform, Part II : Detection statistics", IEEE Transactions on Aerospace and Electronic Systems, vol. 30, pp. 109-115, 1994. https://doi.org/10.1109/7.250411
  7. G. Y. Wang, X. G. Xia, and B. T. Root, "Maneuvering target detection in over-the-horizon radar by using adaptive chirp let transform and subspace clutter rejection", Proc. ICASSP '03, HongKong, China, pp. 49-52, 2003.
  8. I. G. Cuming, H. F. Wong, Digital Processing of Synthetic Aperture Radar Data, Artech House, 2004.