DOI QR코드

DOI QR Code

Defects and Grain Boundary Properties of ZnO with Mn3O4 Contents

Mn3O4 함량에 따른 ZnO의 결함과 입계 특성

  • Hong, Youn-Woo (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo-Soon (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong-Hun (Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 미래융합세라믹본부) ;
  • 신효순 (한국세라믹기술원 미래융합세라믹본부) ;
  • 여동훈 (한국세라믹기술원 미래융합세라믹본부) ;
  • 김진호 (경북대학교 신소재공학부)
  • Received : 2011.10.21
  • Accepted : 2011.11.11
  • Published : 2011.12.01

Abstract

In this study, we investigated the effects of Mn dopant (0.1~3.0 at% $Mn_3O_4$ sintered at 1000$^{\circ}C$ for 1 h in air) on the bulk trap (i.e. defect) and grain boundary properties of ZnO, ZM(0.1~3.0) using admittance spectroscopy (AS), and impedance-modulus spectroscopy (IS & MS). As a result, three kinds of defect were found below the conduction band edge of ZnO as 0.09~0.14 eV (attractive coulombic center), 0.22~25 eV ($Zn^{{\cdot}{\cdot}}_i$), and 0.32~0.33 eV ($V^{\cdot}_o$). The oxygen vacancy increased with Mn doping. In ZM, an electrically single grain boundary as double Schottky barrier was formed with 0.82~1.0 eV of activation energies by IS & MS. We also find out that the barriers of grain boundary of Mn-doped ZnO (${\alpha}$-factor=0.13) were more stabilized and homogenized with temperature compared to pure ZnO.

Keywords

References

  1. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Superlattices and Microstructures, 34, 3 (2003). https://doi.org/10.1016/S0749-6036(03)00093-4
  2. F. A. Kroger, The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1974) p. 743.
  3. K. I. Hagemark, J. Solid State Chem. 16, 293 (1976). https://doi.org/10.1016/0022-4596(76)90044-X
  4. M. H. Sukker and H. L. Tuller, Advances in Ceramics (American Ceramic Society, Columbus, 1983) p. 71.
  5. J. Han, P. Q. Mantas, and A. M. R. Senos, J. Euro. Ceram. Soc., 22, 49 (2002). https://doi.org/10.1016/S0955-2219(01)00241-2
  6. D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
  7. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  8. F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001
  9. Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1301 (2004). https://doi.org/10.1016/j.ceramint.2003.12.028
  10. Y. W Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 875 (2010).
  11. Y. W Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 949 (2009).
  12. Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 21, 738 (2008).
  13. M. Andres-Verges and A. R. West, J. Electroceram., 1, 125 (1997). https://doi.org/10.1023/A:1009906315725
  14. K. A. Abdullah, A. Bui, and A. Loubiere, J. Appl. Phys., 69, 4046 (1991). https://doi.org/10.1063/1.348414