DOI QR코드

DOI QR Code

Nonstoichiometric Addition of ZrO2 and NiO to the Ba(Zn1/3Ta2/3)O3 Microwave Dielectrics

Ba(Zn1/3Ta2/3)O3 마이크로파 유전체에서 ZrO2와 NiO의 비화학양론적 첨가

  • Nam, Kyung-Deog (High Temperature Energy Materials Research Center, KIST) ;
  • Kang, Sung-Woo (The Center of Green Materials Technology, School of Advanced Materials Engineering, Andong National University) ;
  • Kim, Tae-Heui (The Center of Green Materials Technology, School of Advanced Materials Engineering, Andong National University) ;
  • Sim, Soo-Man (School of Material Science and Engineering, Hongik University) ;
  • Choi, Sun-Hee (High Temperature Energy Materials Research Center, KIST) ;
  • Kim, Joo-Sun (High Temperature Energy Materials Research Center, KIST)
  • 남경덕 (한국과학기술연구원 고온에너지재료연구센터) ;
  • 강성우 (안동대학교 신소재공학부 청정소재기술연구센터) ;
  • 김태희 (안동대학교 신소재공학부 청정소재기술연구센터) ;
  • 심수만 (홍익대학교 재료공학부) ;
  • 최선희 (한국과학기술연구원 고온에너지재료연구센터) ;
  • 김주선 (한국과학기술연구원 고온에너지재료연구센터)
  • Received : 2011.10.10
  • Accepted : 2011.10.28
  • Published : 2011.12.01

Abstract

We investigated the physical properties of stoichiometric and non-stoichiometric oxide doped complex perovskite, $Ba(Zn_{1/3}Ta_{2/3})O_3$ ceramics and their impacts on the microwave dielectric performances using various characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and network analyzer. According to the measurement of lattice constant changes, anomalous lattice volume contraction of $ZrO_2$ doped $Ba(Zn_{1/3}Ta_{2/3})O_3$ sample only showed the dielectric quality factor enhancements, which was due to the lattice volume contraction as well as the 1:2 B-site cation ordering. In addition, NiO doping was useful to the stabilization of temperature coefficient of resonance frequency.

Keywords

References

  1. K. H. Yoon, S. J. Yoo, W. S. Kim, J. B. Kim, and E. S. Kim, Jpn. J. Appl. Phys., 38, 5616 (1999). https://doi.org/10.1143/JJAP.38.5616
  2. T. Takahashi, Jpn. J. Appl. Phys., 39, 5637 (2000). https://doi.org/10.1143/JJAP.39.5637
  3. A. Ioachim, M. I. Toacsan, M. G. Banciu, L. Nedelcu, C. A. Dutu, M. Feder, C. Plapcianu, F. Lifei, and P. Nita, J. Eur. Ceram. Soc., 27, 1117 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.023
  4. C. J. Lee, G. Pezzotti, S. H. Kang, D. J. Kim, and K. S. Hong, J. Eur. Ceram. Soc., 26, 1385 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.02.014
  5. S. Nomura, K. Yoyama, and K. Kaneta, Jpn. J. Appl. Phys., 21, L624 (1982). https://doi.org/10.1143/JJAP.21.L624
  6. S. B. Desu and H. M. O'Bryan, J. Am. Ceram. Soc., 68, 546 (1985). https://doi.org/10.1111/j.1151-2916.1985.tb11521.x
  7. E. Koga, Y. Yamagishi, H. Moriwake, K. Kakimoto, and H. Ohsato, J. Eur. Ceram. Soc., 26, 1961 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.041
  8. H. Tamura, T. Konoike, Y. Sakabe, and K. Wakino, J. Am. Ceram. Soc., 67, C59 (1984).
  9. P. K. Davies and J. Tong, J. Am. Ceram. Soc., 80, 1727 (1997).
  10. J. I. Yang, S. Nahm, C. H. Choi, H. J. Lee, and H. M. Park, J. Am. Ceram. Soc., 85, 165 (2002).
  11. J. I. Yang, S. Nahm, C. H. Choi, H. J. Lee, J. C. Kim, and H. M. Park, Jpn. J. Appl. Phys., 41, 702 (2002). https://doi.org/10.1143/JJAP.41.702
  12. M. H. Kim, S. Nahm, W. S. Lee, M. J. Yoo, N. G. Gang and H. J. Lee, J. Eur. Ceram. Soc., 24, 3547 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.12.005
  13. M. H. Kim, S. Nahm, W. S. Lee, M. J. Yoo, J. C. Park, and H. J. Lee, Jpn. J. Appl. Phys., 43, 1438 (2004). https://doi.org/10.1143/JJAP.43.1438
  14. S. W. Kang, T. H. Kim, J. H. Moon, S. Y. Kim, J. Y. Park, S. H. Choi, and J. S. Kim, J. Kor. Ceram. Soc., 45, 701 (2008). https://doi.org/10.4191/KCERS.2008.45.1.701
  15. S. Kamba, J. Petzelt, E. Buixaderas, D. Haubrich, and P. Vanek, J. Appl. Phys., 89, 3900 (2001). https://doi.org/10.1063/1.1351873
  16. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, 1972) p. 156.
  17. M. T. Sebastian, Dielectric materials for wireless communication (Oxford University Press, 2008) p. 275.