DOI QR코드

DOI QR Code

Study for Effective Cooling of Ni-MH Battery Module Using Forced Air Flow

공기 유동에 따른 Ni-MH 배터리 모듈의 효과적인 냉각에 관한 연구

  • Ahn, Chi-Yeong (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Kim, Tae-Sin (Sebang Global Battery Co., Ltd.) ;
  • Kim, Jun-Bom (School of Chemical Engineering & Bioengineering, University of Ulsan)
  • Received : 2011.11.17
  • Accepted : 2011.11.28
  • Published : 2011.11.30

Abstract

In this study, computational simulation was performed for thermal management of modules consisting of 10 batteries. Simplified structure and equivalent thermal resistance network was applied to maintain the thermal properties. Verification test of the mesh were in progress to ensure the reliability of 2.6 mm in the narrow gap between the battery, resulting in at least three divided mesh between the shape of the grid was required. Type of air from rear of the module, type of air from top of the module and type of air from bottom of the module were applied and effective cooling methods are discussed based on the location of fan and air intake of the modules. Maximum temperature and temperature differences of modules that directly affect the performance of the module were compared, and also behavior of the fluid was confirmed by comparing the air flow. The best maximum temperature is shown type of air from bottom of the module to $40.27^{\circ}C$ and type of air from top of the module shows smallest temperature difference $0.73^{\circ}C$.

본 연구에서는 10개의 배터리로 구성된 모듈에 대한 열관리 전산모사를 수행하였다. 배터리의 구조를 단순화 하였고, 전기저항 등가식을 이용한 열전도 이론을 사용하였다. 2.6 mm의 좁은 배터리 사이의 간격에 대한 격자의 신뢰도 검증 실험을 진행하였고, 그 결과 배터리 사이에 최소 3개 이상 나누어진 격자의 형태가 필요하였다. 크게 모듈의 후면에서 공기가 유입되는 형태, 모듈의 상부에서 공기가 유입되는 형태 그리고 모듈의 하부에 공기가 유입되는 형태로 나누어 팬과 공기흡입구의 위치에 따른 모듈의 효과적인 냉각방법을 모색하였다. 배터리의 성능에 영향을 미치는 모듈의 최고온도와 배터리간의 온도 차이를 비교하였고, 공기의 유속을 비교하여 유체의 거동을 확인하였다. 모듈의 하부에서 공기가 유입되는 경우, $40.27^{\circ}C$로 가장 낮은 최고온도를 보였고, 모듈의 상부에서 공기가 유입되는 경우에 $0.73^{\circ}C$로 가장 적은 온도편차를 보였다.

Keywords

References

  1. J. H. Lee, K. H. Lee, and J. H. Choi, 'Design of charge and discharge monitoring system for secondary batteries of hybride electric vehicle', J. Korea Soc. Computer and information, 15, 157 (2010).
  2. D. B. Nah and H. S. Shin, 'HEV: A Review', J. energy engineering, 19, 39 (2010).
  3. U. Köhler, 'Applications-transportation|hybrid electric vehicles: batteries', Encyclopedia of Electrochemical Power Sources, 269 (2009). https://doi.org/10.1016/B978-044452745-5.00367-1
  4. S. Amjad, S. Neelakrishnan, and R. Rudramoorthy, 'Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicle', Renewable and Sustainable Energy Reviews, 14, 1104 (2010). https://doi.org/10.1016/j.rser.2009.11.001
  5. K. Smith and C. Y. Wang, 'Power and thermal characterization of a lithium-ion battery pack for hybridelectric vehicles', J. Power Sources, 160, 662 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.038
  6. R. Kizilel, R. Sabbah, J. R. Selman, and S. Al-Hallaj, 'An alternative cooling system to enhance the safety of Li-ion battery packs', J. Power Sources, 194, 1105 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.074
  7. A. A. Pesaran, 'Battery thermal models for hybrid vehicle simulations', J. Power Sources, 110, 377 (2002). https://doi.org/10.1016/S0378-7753(02)00200-8
  8. J. B. Kim, 'Cooling efficiency improvement of battery pack for electric vehicle(I)', J. Korean Ind. Eng. Chem., 14, 113 (2003).
  9. M. S. Wu, Y. Y. Wang, and C. C. Wan, 'Thermal behaviour of nickel/metal hydride batteries during charge and discharge', J. Power Sources, 74, 202 (1998). https://doi.org/10.1016/S0378-7753(98)00064-0
  10. W. B. Gu and C. Y. Wang, 'Thermal-electrochemical modeling of battery systems', J. Electrochem. Soc., 147, 2910 (2000). https://doi.org/10.1149/1.1393625
  11. S. R. Ovshinsky, M. A. Fetcenko, and J. Ross, 'A Nickel Metal Hydride Battery for Electric Vehicles', Science, 260, 176 (1993). https://doi.org/10.1126/science.260.5105.176
  12. J. G. Sung and J. D. hoy, 'Hybrid-Electric Transit Buses in the USA : Status, Issues and Benefits', Journal of KSAE, 33, 45 (2011).
  13. J. B. Kim, 'Thermal management of a Ni/MH battery module for electric vehicle', J. Korean Ind. Eng. Chem., 8, 1034 (1997).
  14. ANSYS FLUENT 12.0 Theory Guide, ANSYS, Inc., (2009).