DOI QR코드

DOI QR Code

Characteristics of Redox Flow Battery Using the Soluble Lead Electrolyte

납이 용해된 전해액을 사용하는 레독스 플로우 전지의 특성

  • 안상용 (한국특수전지 기술연구소) ;
  • 김응진 (한국특수전지 기술연구소)
  • Received : 2011.10.14
  • Accepted : 2011.11.24
  • Published : 2011.11.30

Abstract

The electrochemical characteristics and performance of redox flow battery using the soluble lead has been evaluated. Cyclic voltammetry was performed on the materials to evaluate deposition and dissolution of lead and lead dioxide. In the negative region, a reduction peak is not observed, and on the reverse scan, on-set voltage is observed at -0.47 V(vs SCE). In the positive region, the distinct peak is observed on the forward and reverse scan. The charge/discharge experiments were carried out graphite electrode in the beaker cell. The charging(deposition) of lead occurs at around 0.5 V(vs SCE) and discharging(dissolution) of lead occur at around 0.25 V(vs SCE). The potential difference is about 0.25 V. The charging(deposition) of dioxide lead is at 1.77 V(vs SCE) and discharging(dissolution) is at around 0.95 V(vs SCE) during first cycle. On subsequent cycles, the charging of dioxide lead starts at below 1.5 V(vs SCE), after a period the voltage increase to 1.7 V(vs SCE). The voltage of discharging is stable at around 1.0 V(vs SCE).

납이 용해된 수용성메탄술폰산을 전해액으로 사용하는 레독스 플로우 전지의 전기화학적 특성과 성능을 평가하였다. 납과 이산화납의 부착, 용해과정을 평가하기 위해 전압전류법을 실시하였다. 음전위쪽으로 순방향 주사에서 뚜렷한 환원피크는 관찰되지 않고, 전류는 서서히 증가하였다. 음전위 구간에서 역방향 주사에서 산화피크의 on-set potential은 -0.47 V(vs SCE)에서 관찰되었다. 양전위 구간에서는 순방향과 역방향에서 뚜렷한 피크가 나타났다. 비이커 셀내에 설치된 전극으로 충방전 실험을 실시하였다. 납의 충전(부착)은 약 0.5 V(vs SCE), 납의 방전(용해)는 약 0.25 V(vs SCE)에서 진행되었으며, 충전 및 방전시의 전위 차이는 약 0.25 V이다. 이산화납의 초기 충전(부착)은 1.7 V(vs SCE)에서 진행되었고, 방전(용해)은 0.95 V 부근의 일정전위에서 진행되었다. 두번째 사이클에서, 충전은 1.5 V(vs SCE)이하에서 시작되고, 이후 전위가 1.7 V(vs SCE)로 증가하였다. 방전 전위는 약 1.0 V로 안정적으로 유지하였다.

Keywords

References

  1. K. C. Divya, Jacob Ostergarrd 'Battery energy storage for power systems-An overview' Electric Power System Research, 79, 511 (2009). https://doi.org/10.1016/j.epsr.2008.09.017
  2. D. Linden, Handbook of Batteries, 2nd ed., McGraw-Hill, New York, N.Y, 1995.
  3. S. M. Tabaatabaai, M. S. Rahmanifar, S. A. Mousavi, et al. 'Lead-acid batteries with foam grids' J. Power Sources, 158, 879 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.017
  4. T. Sukkar and M. Skyllas-Kazacos, 'Membrane stability studies for vanadium redox cell applications' J. Appl. Electrochem., 34, 137 (2004). https://doi.org/10.1023/B:JACH.0000009931.83368.dc
  5. F. Rahman and M. Skyllas-Kazacos, 'Vanadium redox battery : Positive-cell electrolyte studies' J. Power Sources, 189, 1212 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.113
  6. W. Kempton and J. Tomic, 'Vehicle-to-grid power fundamentals : calculating capacity and net revenue' J. Power Sources, 144, 268 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.025
  7. W. Kempton and J. Tomic, 'Vehicle-to-grid power implementation : from stabilizing the grid to supporting large-scale renewable energy', J. Power Sources, 144, 280 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.022
  8. T. Sukkar and M. Skyllas-Kazacos, 'Water transfer behaviour across cation exchange membranes in the vanadium redox battery' J. Membrane Sci., 222, 235 (2003). https://doi.org/10.1016/S0376-7388(03)00309-0
  9. M. D. Gernon, M. Wu, T. Buszta, and P. Janney, 'Environmental benefits of methanesulfonic acid: Comparative properties and advantages' Green, Chem, 1, 127 (1999). https://doi.org/10.1039/a900157c
  10. J. Gonzalez-Garcia, F. Gallud, J. Iniesta, V. Montiel, A. Aldaz, and A. Lasia, 'Kinetics of Electrocrystallization of PbO2 on Glassy Carbon Electrodes Partial Inhibition of the Progressive Three-Dimensional Nucleation and Growth' J. Electrochem. Soc, 147, 2969 (2000). https://doi.org/10.1149/1.1393633
  11. A. B. Velichenko, R. Amadelli, A. Benedetti, D. V. Girenko, S. V. Kovalyov, and F. I. Danilov, 'Electrosynthesis and physicochemical properties of $PbO_{2}$ films' J. Electrochem. Soc, 149, C445 (2002). https://doi.org/10.1149/1.1495498
  12. Sang Yong An, Eung Jin Kim, Youn Saup Yoon, and Hee Jung Kim, 'Evaluation of Electrochemical Stability and Performance of Graphite Sheets as Current Collectors for Lead Acid Battery' J. KECS., 13, 128 (2010). https://doi.org/10.5229/JKES.2010.13.2.128
  13. Li Zhang, Jie Cheng, Yu-sheng Yang, Yue-hua Wen, Xindong Wang, and Gao-ping Cao, 'Study of zinc electrodes for single flow zinc/nickel battery application' J. Power Sources, 179, 381 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.088
  14. J. Gonazález-Garcia, F. Gallud, J. Iniesta, V. Montiel, A. Aldaz, and A. Lasi, 'Kinetics of Electrocrystallization of $PbO_{2}$ on Glassy Carbon Electrodes Partial Inhibition of the Progressive Three-Dimensional Nucleation and Growth' J. Electrochem. Soc., 147, 2969 (2000). https://doi.org/10.1149/1.1393633
  15. A. B. Velichenko, R. Amadelli, A. Benedetti, D. V. Girenko, S. V. Kovalyov, and F. I. Danilov, 'Electrosynthesis and Physicochemical Properties of $PbO_{2}$ Films' J. Electrochem. Soc., 149, C445 (2002). https://doi.org/10.1149/1.1495498