DOI QR코드

DOI QR Code

Polarization Behavior of Li4Ti5O12 Negative Electrode for Lithiumion Batteries

  • Ryu, Ji-Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University)
  • Received : 2011.07.05
  • Accepted : 2011.08.14
  • Published : 2011.09.30

Abstract

$Li_4Ti_5O_{12}$ is prepared through a solid-state reaction between $Li_2CO_3$ and anatase $TiO_2$ for applications in lithium-ion batteries. The rate capability is measured and the electrode polarization is analyzed through the galvanostatic intermittent titration technique (GITT). The rate characteristics and electrode polarization are highly sensitive to the amount of carbon loading. Polarization of the $Li_4Ti_5O_{12}$ electrode continuously increases as the reaction proceeds in both the charge and discharge processes. This relation indicates that both electron conduction and lithium diffusion are significant factors in the polarization of the electrode. The transition metal (Cu, Ni, Fe) ion added during the synthesis of $Li_4Ti_5O_{12}$ for improving the electrical conductivity also greatly enhances the rate capability.

Keywords

References

  1. K. M. Colbow, J. R. Dahn and R. R. Haering, J. Power Sources, 26, 397 (1989). https://doi.org/10.1016/0378-7753(89)80152-1
  2. K. Zaghib, M. Armand and M. Gauthier, J. Electrochem. Soc., 145, 3135 (1998). https://doi.org/10.1149/1.1838776
  3. J. Lim, E. Choi, V. Mathew, D. Kim, D. Ahn, J. Gim, S. Kang and J. Kim, J. Electrochem. Soc., 158, A275 (2011). https://doi.org/10.1149/1.3527983
  4. J. Kim and J. Cho, Electrochem. Solid State Lett., 10, A81 (2007). https://doi.org/10.1149/1.2431242
  5. J. Huang and Z. Jiang, Electrochem. Solid State Lett., 11, A116 (2008). https://doi.org/10.1149/1.2917585
  6. Y. Li, G.L. Pan, J.W. Liu and X.P. Gao, J. Electrochem. Soc., 156, A495 (2009). https://doi.org/10.1149/1.3121216
  7. J. Kim, S. Kim, H. Gwon, W. Yoon and K. Kang, Electrochim. Acta, 54, 5914 (2009). https://doi.org/10.1016/j.electacta.2009.05.058
  8. D. Wang, H. Xu, M. Gu and C. Chen, Electrochem. Commun., 11, 50 (2009). https://doi.org/10.1016/j.elecom.2008.10.029
  9. S. Huang, Z. Wen, X. Zhu and X. Yang, J. Electrochem Soc., 152, A1301 (2005). https://doi.org/10.1149/1.1922889
  10. B. Tian, H. Xiang, L. Zhang, Z. Li and H. Wang, Electrochim. Acta, 55, 5453 (2010). https://doi.org/10.1016/j.electacta.2010.04.068
  11. J. Wolfenstine and J. L. Allen, J. Power Sources, 180, 582 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.019
  12. T. Yia, J. Shu, Y. Zhu, X. Zhu, R. Zhu and A. Zhou, J. Power Sources, 195, 285 (2010). https://doi.org/10.1016/j.jpowsour.2009.07.040
  13. H. Zhao, Y. Li, Z. Zhu, J. Lin, Z. Tian and R.Wang, Electrochim. Acta, 53, 7079 (2008). https://doi.org/10.1016/j.electacta.2008.05.038
  14. C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, A.J. Kahaian, T. Goacher and M.M. Thackeray, J. Electrochem. Soc., 148, A102-A104 (2001). https://doi.org/10.1149/1.1344523
  15. B. Zhang, H. Du, B. Li and F. Kang, Electrochem. Solid State Lett., 13, A36 (2010). https://doi.org/10.1149/1.3294846
  16. G. Zhu, C. Wang and Y. Xia, J. Electrochem. Soc., 158, A102 (2011). https://doi.org/10.1149/1.3519070
  17. J. Gao, J. Ying, C. Jiang and C. Wan, J. Power Sources, 166, 255 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.014
  18. H. Jung, J. Kim, B. Scrosati and Y. Sun, J. Power Sources, 196, 7763 (2011). https://doi.org/10.1016/j.jpowsour.2011.04.019
  19. J. H. Ryu, J. W. Kim, Y. Sung and S. M. Oh, Electrochem. Solid State Lett., 7, A306 (2004). https://doi.org/10.1149/1.1792242
  20. N. Takami, K. Hoshina and H. Inagaki, J. Electrochem. Soc., 158, A725 (2011). https://doi.org/10.1149/1.3574037

Cited by

  1. Reduction of Li4Ti5O12Powder Agglomeration by the Addition of Carbon Black during Solid-state Synthesis vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.63
  2. Effects of surface fluorination on the electrochemical properties and thermal stability of LiFePO4 cathode for lithium-ion batteries vol.149, 2013, https://doi.org/10.1016/j.jfluchem.2013.01.038
  3. Effect of thermal treatment used in the sol–gel synthesis of Li4Ti5O12 spinel on its electrochemical properties as anode for lithium ion batteries vol.163, 2015, https://doi.org/10.1016/j.electacta.2015.02.111
  4. Efficient Electrochemical Water Oxidation and Oxidative Degradation of Rhodamine B: A Comparative Study Using High-Purity Birnessites Containing Li+ , Na+ or K+ Ions vol.2, pp.20, 2017, https://doi.org/10.1002/slct.201700453