DOI QR코드

DOI QR Code

Carotenoid Pigments from Suspended and Sinking Particulate Matter in Prydz Bay, Antarctica

  • Noh, Il (Division of Marine Environment & Bioscience, Korea Maritime University)
  • Received : 2011.05.23
  • Accepted : 2011.10.19
  • Published : 2011.11.30

Abstract

Suspended and sinking particles were collected during ODP Leg 119 to the Indian Ocean sector of the Antarctic Ocean. Field work was carried out at four sampling sites in Prydz Bay. Two of these sites were located in the Outer Bay, and two in the Inner Bay. At the four locations, a total of ten deployments of a sediment trap array were made. The concentrations of carotenoids both in suspended and sinking particulate matter in Prydz Bay were analyzed using HPLC. Fucoxanthin was the dominant carotenoid pigments both in suspended and sinking particles. The present study also indicates that 19'-hexanoyoxyfucoxanthin-containing prymesiophytes (Phaeocystis spp.) was abundant in the study area. The flux rates of carotenoids were generally highest at 50 m, and approximately double the flux rates at deeper horizons, however, at Inner Bay sites, the mean flux rates of carotenoids were greatest at 200 m, and 3 times greater than that of 50 m. Such anomalous high fluxes at 200 m imply that grazers were locally abundant between 100 m and 200 m at these sites close to land, and this hypothesis is supported by visual evidence of lots of fecal pellets in the 200 m trap. Integrates standing stocks versus sinking pigments data support that particulate material in Prydz Bay was not recycled rapidly.

Keywords

References

  1. Abaychi, J. K., Riley, J. P., 1979, The determination of phytoplankton pigments by high-performance liquid chromatography, Anal. Chim. Acta, 107, 1-11. https://doi.org/10.1016/S0003-2670(01)93190-3
  2. Allanson, B. R., Hart, R. C., Lutjeharms, J. R. E., 1981, Observations on the nutrients, chlorophyll and primary production of the Southern Ocean south of Africa, South African J. Antarctic Res., 10/11, 3-14.
  3. Alldredge, A. L., 1979, The chemical composition of microscopic aggregates in two neritic seas, Limnol. Oceanogr., 254, 855-866.
  4. American Public Health Association, 1989, High-performance liquid chromatographic determination of algal chlorophylls and their degradation products, in: Standard Methods for the Examination of Water and Wastewater, 17th ed., Washington, D. C., 1039.
  5. Barrett, J., Jeffrey, S. W., 1971, A note on the occurrence of chlorophyllase in marine algae, J. Exp. Mar. Biol. Ecol., 7, 255-262. https://doi.org/10.1016/0022-0981(71)90008-6
  6. Bidigare, R. R., 1989, Photosynthetic pigment composition of the brown tide alga: Unique chlorophyll and carotenoid derivatives, in: Cosper, E., Carpenter, E. J. and Bricelj, M. (eds.), Novel Phytoplankton Blooms, Coastal and Estuarine Studies, vol. 35. Springer-Verlag, Berlin, 57-75.
  7. Bidigare, R. R., Kennicutt, M. C., Brooks, J. M., 1985, Rapid determination of chlorophylls and degradation products by high performance liquid chromatography, Limnol. Oceanogr., 30, 432-435. https://doi.org/10.4319/lo.1985.30.2.0432
  8. Bidigare, R. R., Frank, T. J., Zastrow C., Brooks, J. M., 1986, The distribution of algal chlorophylls and their degradation products in the Southern Ocean, Deep-Sea Res., 33, 923-937.
  9. Biggs, D. C., Berkowitz, S. P., Altabet, M. A., Bidigare, R. R., DeMaster, D. J., Dunbar, R. B., Leventer, A. N., Macko, S. A., Nittroluer, C. A., Ondrusek, M. E., 1988, Upper-ocean particulate fluxes in the Weddell Sea, Proc. ODP, Init. Repts., 113, College Station, TX (Ocean Drilling Program), 77-86.
  10. Biggs, D. C., Berkowitz, S. P., Altabet, M. A., Bidigare, R. R., DeMaster, D. J., Macko, S. A., Ondrusek, M. E., Noh, I., 1989, Cooperative study of upper ocean particulate fluxes, Proc. ODP, Init. Repts., 119, 109-120.
  11. Bogdanov, D. V., Sokolov, V. A., Khromov, N. S., 1969, Regions of high biological and commercial productivity in Gulf of Mexico and Caribbean Sea, Oceanology, 8, 371-381.
  12. Brewer, P. G., Nozaki, Y., Spencer, D. W., Fleer, A. P., 1980, Sediment trap experiments in the deep North Atlantic: isotopic and elemental fluxes, J. Mar. Res., 38, 703-728.
  13. Deuser, W. G. Ross, E. H., 1980, Seasonal changes in the flux of organic carbon to the deep Sargasso Sea, Nature, 283, 364-365. https://doi.org/10.1038/283364a0
  14. Deuser, W. G., Ross, E. H., Anderson., R. F., 1981, Seasonality in the supply of sediment to the deep Sargasso Sea and implication for the rapid transfer of matter to the deep ocean, Deep-Sea Res., 28, 495-505. https://doi.org/10.1016/0198-0149(81)90140-0
  15. Dugdale, R. C., Goering, J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr., 12, 196-206. https://doi.org/10.4319/lo.1967.12.2.0196
  16. Dunbar, R. B., 1984, Sediment trap experiments on the Antarctic continental margin, Antarctic J. U. S., Ann. Rev. Iss., 19, 70-71.
  17. Dymond, J., Fisher, K., Clauson, M., Cobler, R., Gardner, W., Berger, W., Richardson, M., Soutar, A., Dunbar, R., 1981, A sediment trap intercomparison study in the Santa Barbara basin, Earth Planet, Sci. Lett., 53, 409-418. https://doi.org/10.1016/0012-821X(81)90045-5
  18. El-Sayed, S. Z., 1968, Primary productivity of the Antarctic and subantarctic, in: Bushnell, V. (ed.), Primary Productivity and Benthic Marine Algae of the Antarctic and Subantarctic, Antarctic Map Folio series, Folio 10, American Geographical Society, New York, 119-135.
  19. El-Sayed, S. Z., 1970, On the productivity of the Southern Ocean (Atlantic and Pacific sectors), in: Holdgate, A. (ed.), Antarctic Ecology, vol. 1, Academic Press, New York, 119-135.
  20. El-Sayed, S. Z., Turner, J. T., 1977, Productivity of the Antarctic and tropical subtropical regions: A comparative study, in: Dunbar, M. J. (ed.), Polar Oceans Arctic Institute of North America, Calgary, Alberta, Canada, 463-504.
  21. El-Sayed, S. Z., Taguchi, S., 1981, Primary production and standing crop of phytoplankton along the ice-edge in the Weddell Sea, Deep-Sea Res., 28A(9), 1017-1032.
  22. El-Sayed, S. Z., Weber, L. H., 1982, Spatial and primary productivity in the southwest Atlantic and the Scotia Sea, Polar Biol., 1, 83-90.
  23. Eppley, R. W., Peterson, B.J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677-680. https://doi.org/10.1038/282677a0
  24. Eppley, R. W., Renger E. H., Betzer P. R., 1983, The residence time of particulate organic carbon in the surface layer of the ocean, Deep-Sea Res., 30, 311-323. https://doi.org/10.1016/0198-0149(83)90013-4
  25. Evans, C. A., O'Reilly, J. E., Thomas, J. P., 1987, A Handbook for the Measurement of Chlorophyll a and Primary Production, BIOMASS Scientific Series No. 8, Texas A&M Univ., College Station, Texas, 114.
  26. Fogg, G. E., 1977, Aquatic primary production in the Antarctic, Phil. Trans R. Soc. Lond. B 279, 27-38. https://doi.org/10.1098/rstb.1977.0069
  27. Gallagher, J. C., Wood, A. M., Alberte, R. S., 1984, Ecotyptic differentiation in the marine diatom Skeletonema costatum: influence of light intensity on the photosynthetic apparatus, Mar. Biol., 82, 121-134. https://doi.org/10.1007/BF00394096
  28. Hayes, P. K., Whitaker, T. M., Fogg, G. E., 1984, The distribution and nutrient status of phytoplankton in the Southern Ocean between 20 and 70 ${^{\circ}W}$, Polar Biol., 3, 153-165. https://doi.org/10.1007/BF00442647
  29. Holm-Hansen, O., 1985, Nutrient cycles in Antarctic Marine Ecosystems, in: Siegfried, W. R., Condy, P. R. and Laws, R. M. (eds.), Antarctic Nutrient Cycles and Food Webs, Springer-Verlag, Berlin, 6-10.
  30. Holm-Hansen, O., El-Sayed, S. Z., Franceschini, G. A., Cuhel, R. L., 1977, Primary production and the factors controlling phytoplankton growth in Southern Ocean, in: Llano, G. A. (ed.), Adaptations within Antarctic Ecosystems, Proceedings of the third SCAR Symposium on Antarctic Biology, National Academy of Sciences, Washington, D. C., 11-50.
  31. Honjo, S., 1978, Sedimentation of materials in the Sargasso Sea at a 5367 m deep station, J. Mar. Res., 36, 469-492.
  32. Honjo, S., 1982, Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin, Science, 218, 883-884. https://doi.org/10.1126/science.218.4575.883
  33. Jeffrey, S. W., 1968, Quantitative thin-layer chromatography of chlorophylls and carotenoids from marine algae, Biochim. Biophys. Acta, 162, 271-285. https://doi.org/10.1016/0005-2728(68)90109-6
  34. Jeffrey, S. W., 1972, Preparation and some properties of crystalline chlorophyll $c_1$ and $c_2$ from marine algae, Biochim. Biophys. Acta, 279, 15-33. https://doi.org/10.1016/0304-4165(72)90238-3
  35. Jeffrey, S. W., 1974, Profiles of photosynthetic pigments in the ocean using thin-layer chromatography, Mar. Biol., 26, 101-110. https://doi.org/10.1007/BF00388879
  36. Jeffrey, S. W., 1980, Algal pigment systems, in: Falkowski, P. G. (ed.), Primary productivity in the sea, Plenum, New York. 33-58
  37. Jeffrey, S. W., 1981, An improved thin-layer chromatographic technique for marine phytoplankton pigments, Limnol. Oceanogr., 16, 191-197.
  38. Jeffrey, S. W., Humphrey, G. F., 1975, New spectrophotometric equations for determining chlorophylls a, b, $c_1$ and $c_2$ in higher plants, algae and natural phytoplankton, Biochemie und Physiologie der Pflanzen, 167, 191-194. https://doi.org/10.1016/S0015-3796(17)30778-3
  39. Jeffrey, S. W., Hallegraeff, G. M., 1980, Studies on phytoplankton species and photosynthetic pigments in a warm core eddy of the East Austrailian Current. I. Summer populations, Mar. Ecol. Prog. Ser., 3, 285-294. https://doi.org/10.3354/meps003285
  40. Jennings, J. C., Gordon, L. I., Nelson, D. M., 1984, Nutrient depletion indicates high primary productivity in the Weddell Sea, Nature, 309, 51-54. https://doi.org/10.1038/309051a0
  41. Kang, S. H., 1989, Diatom species composition and abundance in water column assemblages from five drill sites in Prydz Bay, Antarctica, Ocean Drilling Program Leg 119: Distributional patterns, M. S. Thesis, Texas A&M University, College Station, Texas, USA.
  42. Karl, D. M., Knauer, G. A., Martin, J. H., Ward, B. B., 1984, Chemolithotrophic bacterial production in association with rapid sinking particles: Implication of oceanic carbon cycles and mesopelagic food webs, Nature, 309, 54-56. https://doi.org/10.1038/309054a0
  43. Knauer, G. A., Hebel, D., Cippriano, F., 1982, Marine snow: Major site of primary production in coastal waters, Nature, 300, 630-631. https://doi.org/10.1038/300630a0
  44. Lorenzen, C. J., 1972, Extinction of light in the ocean by phytoplankton, J. Cons. Int. Explor. Mer., 34, 262-267. https://doi.org/10.1093/icesjms/34.2.262
  45. Lorenzen, C. J., 1976, Primary production in the sea, in: Cushing, D. H. and Walsh, J. J. (eds.), Ecology of the Seas, Blackwell Scientific Publications, Oxford, 173-185.
  46. Mantoura, R. F. Llewellyn, C. A., 1983, The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography, Anal. Chim. Acta, 151, 297-314. https://doi.org/10.1016/S0003-2670(00)80092-6
  47. Marra, J., Houghton, R. W., Boardman, D. C., Neale, P. J., 1982, Variability in surface chlorophyll a at a shelf break front, J. Mar. Res., 40, 575-591.
  48. Marra, J., Boardman, D. C., 1984, Late winter chlorophyll a distributions in the Weddell sea, Mar. Ecol. Prog. Ser., 19, 197-205. https://doi.org/10.3354/meps019197
  49. McCave, I. N., 1975, Vertical flux of particles in the ocean, Deep-Sea Res., 22, 491-502.
  50. Noh, I., 2011, Chlrorophylls and their degradation products using High Performance Liquid Chromatography (HPLC), with data from suspended and sinking particulate matter in Prydz Bay, Antarctica, J. Korean Nav. Port Res., 35(4), 323-334. https://doi.org/10.5394/KINPR.2011.35.4.323
  51. Parsons, T. R., Stronach, J., Borstad, G. A., Louttit, G., Petty, R. I., 1981, Biological fronts in the Strait of Georgia, British Colombia, Mar. Ecol. Prog. Ser., 6, 237-242. https://doi.org/10.3354/meps006237
  52. Rowe, G. T., Gardner, W. D., 1979, Sedimentation rates in the slope water of the northwest Atlantic Ocean measured directly with sediment traps, J. Mar. Res., 37, 581-600.
  53. Sakshaug, E., Holm-Hansen, O., 1984, Factors governing pelagic production in polar oceans, in: Bolis, L. and Gilles, R. (eds.), Marine Phytoplankton and Productivity, Springer-Verlag, Berlin, 1-17.
  54. Seliger, H. H., McKinley, K. R., Biggley, W. H., Rivkin, R. B., Aspden, K. R. H., 1981, Phytoplankton patchiness and frontal regions, Mar. Biol., 61, 119-131. https://doi.org/10.1007/BF00386651
  55. Shanks, A. L., Trent, J. D., 1979, Marine Snow: Microscale nutrient patches, Limnol. Oceanogr., 24, 850-854. https://doi.org/10.4319/lo.1979.24.5.0850
  56. Silver, M. W., Shanks, A. L., Trent, J. D., 1978, Marine snow: microplankton habitat and sources of small-scale patchiness in pelagic populations, Science, 201, 371-373. https://doi.org/10.1126/science.201.4353.371
  57. Smith, W. O. Jr., Nelson, D. M., 1985, Phytoplankton bloom produced by a receding ice edge in the Ross Sea: Spatial coherence with the density field, Science, 227, 163-166. https://doi.org/10.1126/science.227.4683.163
  58. Steele, J. H., 1962, Environmental control of photosynthesis in the sea, Limnol. Oceanogr., 7, 137-150. https://doi.org/10.4319/lo.1962.7.2.0137
  59. Stephens, F. C., 1989, Effects of ultraviolet light on photosynthesis and pigments of Antarctic marine phytoplankton, Ph. D. Dissertation, Texas A&M University, College Station, Texas, USA.
  60. Strickland, J. D. H., Parsons, T. R., 1972, A Practical Handbook of Seawater Analysis, Fish. Res. Board Can. Bull., 167, 2nd ed., Ottawa, Canada.
  61. Suess, E., 1980, Particulate organic carbon flux in the oceans: surface productivity and oxygen utilization, Nature, 288, 260-263. https://doi.org/10.1038/288260a0
  62. Tilzer, M. M., von Bodungen, B., Smetacek, V., 1985, Light-dependence of phytoplankton photosynthesis in the Antarctic Ocean: Implications for regulating productivity, in: Siegfried, W. R., Condy, P. R. and Laws, R. M. (eds.), Antarctic Nutrient Cycles and Food Webs, Springer-Verlag, Berlin, 60-69.
  63. Tilzer, M. M., Elbraechter, M., Gieskes, W. W., Beese, B., 1986, Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton, Polar Biol., 5, 105-111. https://doi.org/10.1007/BF00443382
  64. Trent, J. D., Shanks, A. L., Silver, M. W., 1978, In situ and laboratory measurements on macroscopic aggregates in Monterey Bay, California, Limnol. Oceanogr., 23, 626-635. https://doi.org/10.4319/lo.1978.23.4.0626
  65. Urrere, M. A. Knauer, G. A., 1981, Zooplankton fecal pellet fluxes and vertical transport of particulate organic material in the pelagic environment, J. Plank. Res., 3, 369-387. https://doi.org/10.1093/plankt/3.3.369
  66. Weber, L. H. El-Sayed, S. Z., 1985, Spatial variability of phytoplankton and the distribution and abundance of krill in the Indian sector of the Southern Ocean, in: Siegfried, W. R., Condy, P. R. and Laws, R. M. (eds.), Antarctic Nutrient Cycles and Food Webs, Springer-Verlag, Berlin, 284-293.
  67. Welschmeyer, N. A., Lorenzen, C. J., 1985, Chlorophyll budgets: zooplankton grazing and phytoplankton growth in a temperate fjord and the central Pacific gyres, Limnol. Oceanogr., 30, 1-21. https://doi.org/10.4319/lo.1985.30.1.0001
  68. Wood, A. M., 1979, Chlorophyll a:b ratios in marine planktonic algae, J. Phycol., 15, 330-332. https://doi.org/10.1111/j.1529-8817.1979.tb02648.x