DOI QR코드

DOI QR Code

무인항공기의 근거리 비행체 탐지 및 추적을 위한 영상처리 알고리듬

An Image Processing Algorithm for Detection and Tracking of Aerial Vehicles in Short-Range

  • 조성욱 (KAIST 항공우주공학과 대학원) ;
  • 허성식 (KAIST 항공우주공학과 대학원) ;
  • 심현철 (KAIST 항공우주공학과) ;
  • 최형식 (한국항공우주연구원 비행제어팀)
  • 투고 : 2011.07.18
  • 심사 : 2011.11.30
  • 발행 : 2011.12.01

초록

본 논문에서는 무인항공기의 근거리 비행체 탐지 및 추적을 위한 영상처리 알고리듬을 제안한다. 제안된 알고리듬은 연속되는 영상에서 계산되는 호모그래피를 사용하여 움직이는 객체를 검출하고 확률적 다수-가설 추적기법으로 검출된 객체가 접근하는 비행체인지의 여부를 판단한다. 이는 항공기의 저고도 비행 시 영상에 보여지는 지표면과 같이 복잡한 배경 위에서 이동하는 비행체를 검출할 수 있고, 비행체의 동역학적 특성을 고려할 수 있기 때문에 색상기반의 비행체 탐지기법보다 향상된 성능을 보여준다. 또한 외부영향에 대한 임계치의 민감도를 현저히 감소시키므로 소형 무인항공기의 저고도 비행실험수행 시 효과적이다. 제안된 영상처리 알고리듬을 실제 비행실험 영상에 적용하여 성능을 검증하였다.

This paper proposes an image processing algorithms for detection and tracking of aerial vehicles in short-range. Proposed algorithm detects moving objects by using image homography calculated from consecutive video frames and determines whether the detected objects are approaching aerial vehicles by the Probabilistic Multi-Hypothesis Tracking method(PMHT). This algorithm can perform better than simple color-based detection methods since it can detect moving objects under complex background such as the ground seen during low altitude flight and consider the characteristics of vehicle dynamics. Furthermore, it is effective for the flight test due to the reduction of thresholding sensitivity against external factors. The performance of proposed algorithm is verified by applying to the onboard video obtained by flight test.

키워드

참고문헌

  1. A. D. Zeitlin, 2007, "Technology Milstones - Detect, Sense & Avoid for Unmanned Aircraft Systems", AIAA Infotech@Aerospace Conference and Exhibit, AIAA-2007-2765
  2. Kie-Jeong Seong, Eung-Tai Kim, and Seong-Pil Kim, 2008, "Development Trend of the Autonomous Flight Control Technology," Current Industrial and Technological Trends in Aerospace, Vol. 6. 2, pp.143-153.
  3. Eric N. Johnson, Anthony J. Calise, Yoko Watanabe, Jincheol Ha, and James C. Neidhoefer, 2007, "Real-Time Vision-Based Relative Aircraft Navigation", Journal of Aerospace Computing, Information, and Communication, Vol.4, pp.707-738. https://doi.org/10.2514/1.23410
  4. John Lai, Luis Mejias, and Jason J. Ford, 2011, "Airborne Vision-Based Collision Detection System," Journal of Field Robotics, Vol. 28, Issue 2, pp.137-157. https://doi.org/10.1002/rob.20359
  5. Jianbo Shi, Carlo Tomasi, 1994, "Good Features to Track", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.593-600.
  6. Jean-Yves Bouguet, 2000, "Pyramidal Implemen -tation of the Lucas Kanade Feature Tracker", Intel Corporation, Microprocessor Research Labs, http://www.intel.com/research/mrl/ research/opencv/
  7. Richard Hartley, Andrew Zisserman, 2003, "Multiple View Geometry in comouter vision 2nd edition", Cambridge University Press
  8. Roy L. Streit, and Tod E. Luginbuhl, 1995, "Probabilistic Multi-Hypothesis Tracking," NUWC-NPT Technical Report 10.428, 15
  9. S.Huh, and D.H.Shim, 2010, "A Vision-Based Landing System for Small Unmanned Aerial Vehicles using an Airbag," Control Engineering Practice, Vol. 18, Issue 7, pp. 812-823. https://doi.org/10.1016/j.conengprac.2010.05.003
  10. Dong-il You, and Hyun-Chul Shim, 2011, "Leader-Follower based Formation Guidance Law and Autonomous Formation Flight Test of Multiple MAVs," Domestic Journal of KSAS, Vol. 2. pp. 121-127 https://doi.org/10.5139/JKSAS.2010.39.2.121
  11. S.Huh, Dong-il You, Sang-woo Moon, Sun-Hye Yoon, Yeon-Duk Jeong, 2009, "Developement of an autopilot system and a Grond Monitoring Station for Multiple UAVs", KSAS fall conference, pp. 775-778
  12. Sungwook. Cho, S.Huh, Dong-il You, Hyun-Chul Shim and Hyung-Sik Choi, 2011, "An Image Processing Algorithm for Detection and Tracking of Aerial Vehicles in Short Range", pp. 592-598, KSAS spring conference, FC4-2