DOI QR코드

DOI QR Code

Numerical and Experimental Study on Recirculation Flow Driven by an AC Electromagnetic Force in a Circular Container

교류전자기력에 의해 구동되는 원형 용기 내의 순환유동에 관한 수치해석적 및 실험적 연구

  • Suh, Ga-Hyun (Dept. of Energy Resources Engineering, Seoul Nat'l Univ.) ;
  • Suh, Seung-Gyu (Dept. of Mechanical Engineering, POSTECH) ;
  • Choe, Jong-Geun (Dept. of Energy Resources Engineering, Seoul Nat'l Univ.)
  • 서가현 (서울대학교 에너지자원공학과) ;
  • 서승규 (POSTECH 기계공학과) ;
  • 최종근 (서울대학교 에너지자원공학과)
  • Received : 2011.02.01
  • Accepted : 2011.09.23
  • Published : 2011.12.01

Abstract

We performed numerical simulations of the recirculation flow of an electrolyte fluid in a circular container driven by an AC electromagnetic force for solving continuity and momentum equations. We also conducted an experiment to obtain flow data, which were in good agreement with the numerical simulation results. Furthermore, we performed a parametric study on both numerical and experimental aspects and found that the fluid velocity increases with an increase in the electrolyte concentration and magnetic intensity and with a decrease in the fluid depth and AC frequency.

원형 용기에서 전자기력에 의해 구동되는 전해질 유체의 순환유동을 구하기 위해 연속 방정식, 운동량 방정식에 대한 수치해석을 수행하였다. 그리고 실험을 병행하여 기초 데이터를 마련하고, 실험과 수치해석 결과가 정성적, 정량적 면에서 상당히 일치한 것을 확인하였다. 또 몇 가지 실험인자 값을 바꿔가며 실험과 수치해석을 반복 수행한 결과 전해질 농도가 클수록, 수심이 얕을수록, 자기장이 클수록, 교류 진동수가 작을수록 유속이 빨라지는 등 각각의 인자가 미치는 영향을 알 수 있었다.

Keywords

References

  1. Kim, S.J., Lee, C.M. and Lee, S.J., 1997, "Experimental Investigation of Flow Characteristics of a Magnetohydrodynamic (MHD) Duct of Fan-Shaped Cross Section," KSME Int. J., Vol. 11, No. 5, pp. 547-555. https://doi.org/10.1007/BF02945267
  2. Kwon, J.T., Lim, H.J., Kim, C.E., Kim, S.H., Kim, M.S. and Jeon, M.H., 2007, "Analysis of the Liquid Metal Flow in the Rectangular Duct of an Electromagnetic Pump," Proc. KSME 2007 Spring Conf., pp. 3110-3115.
  3. http://infrl.kist.re.kr/Teams/infrl/elex.html
  4. http:// atech-korea.com/en/hotlink/abb2.htm.
  5. Cha, J.E., Kim, H.R., Kim, J.M., Nam, H.Y., Kim, S.O. and Kim, B.H., 2007, "MHD Pressure Drop of a Liquid-Metal Flow Under a Transverse Magnetic Field," Proc. KSME 2007 Spring Conf., pp. 2638-2641.
  6. Davidson, P.A., 1999, "Magnetohydrodynamics in Material Processing," Annu. Rev. Fluid Mech., Vol. 31, pp. 273-300. https://doi.org/10.1146/annurev.fluid.31.1.273
  7. Lemoff, A.V. and Lee, A.P., 2000, "An AC Magnetohydrodynamic Micropump," Sensors and Actuators B, Vol. 63, pp. 178-185. https://doi.org/10.1016/S0925-4005(00)00355-5
  8. West, J., Karamata, B., Lillis, B., Gleeson, J.P., Alderman, J., Collins, J.K., Lane, W., Mathewson, A. and Berney, H., 2002, "Application of Magneto- Hydrodynamic Actuation to Continuous Flow Chemistry," Lab Chip, Vol. 2, pp. 224-230. https://doi.org/10.1039/b206756k
  9. Homsy, A., Koster, S., Eijkel, J.C.T., van den Berg, A., Lucklum, F., Verpoorte, E. and de Rooij, N.F., 2005, "A High Current Density DC Magneto- hydrodynamic (MHD) Micropump," Lab Chip, Vol. 5, pp. 466-471. https://doi.org/10.1039/b417892k
  10. Qian, S. and Bau, H., 2005, "Magnetohydro- dynamic Stirrer for Stationary and Moving Fluids," Sensors and Actuators B, Vol. 106, pp. 859-870. https://doi.org/10.1016/j.snb.2004.07.011
  11. Pamme, N., 2006, "Magnetism and Microfluidics," Lab Chip, Vol. 6, pp. 24-38. https://doi.org/10.1039/b513005k
  12. Tenforde, T.S., 2005, "Magnetically Induced Electric Fields and Currents in the Circulatory System," Progress in Biophysics and Molecular Biology, Vol. 87, pp. 279-288. https://doi.org/10.1016/j.pbiomolbio.2004.08.003
  13. Lim, S.S., 2004, "A Study on a Continuous Flow MHD(magnetohydrodynamic) Micropump for Micro- fluidic System," M.S. Thesis, Graduate School, Sogang University.
  14. Ferziger, J.H. and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer.