DOI QR코드

DOI QR Code

Study on evaluating the significance of 3D nuclear texture features for diagnosis of cervical cancer

자궁경부암 진단을 위한 3차원 세포핵 질감 특성값 유의성 평가에 관한 연구

  • Received : 2011.04.28
  • Accepted : 2011.08.04
  • Published : 2011.10.31

Abstract

The aim of this study is to evaluate whether 3D nuclear chromatin texture features are significant in recognizing the progression of cervical cancer. In particular, we assessed that our method could detect subtle differences in the chromatin pattern of seemingly normal cells on specimens with malignancy. We extracted nuclear texture features based on 3D GLCM(Gray Level Co occurrence Matrix) and 3D Wavelet transform from 100 cell volume data for each group (Normal, LSIL and HSIL). To evaluate the feasibility of 3D chromatin texture analysis, we compared the correct classification rate for each of the classifiers using them. In addition to this, we compared the correct classification rates for the classifiers using the proposed 3D nuclear texture features and the 2D nuclear texture features which were extracted in the same way. The results showed that the classifier using the 3D nuclear texture features provided better results. This means our method could improve the accuracy and reproducibility of quantification of cervical cell.

본 연구의 목적은 세포핵의 3차원 염색질 질감 특성값이 암의 진행정도를 인식하는데 있어 유용한 특성값인지 평가하는데 있다. 특히, 제안한 방법이 악성이라고 진단된 세포진 도말 표본에서 정상으로 보이는 세포의 염색질 패턴에서의 미세한 차이를 인식할 수 있는지 살펴보고자 한다. 분류등급 정상(Normal), 저등급 편평 상피내 병변(LSIL, Low grade Squamous Intraepithelial Lesion), 고등급 편평 상피내 병변(HSIL, High grade Squamous Intraepithelial Lesion)에서 각각 100개씩의 세포 볼륨데이터로부터 3차원 GLCM(Gray Level Co occurrence Matrix)에 기반한 질감 특성값과 3차원 Wavelet 변환에 기반한 질감 특성값을 추출하고 분류기를 생성한 후 각 분류기에 대한 분류정확도를 비교하였으며, 2차원 세포진 영상에서의 세포핵 질감 특성값과 비교하기 위해 동일한 실험 볼륨데이터의 투영된 2차원 영상을 이용하여 같은 방법으로 2차원 세포핵 질감 특성값을 추출하고 분류기를 생성한 후 분류정확도를 비교하였다. 2차원 세포핵 질감 특성값과의 비교연구에서 3차원 세포핵 질감 특성값이 등급별 분류에 있어 보다 효율적인 것을 확인 할 수 있었으며 이는 3차원 염색질 질감 특성값이 자궁경부 세포의 정량화에 대한 정확성과 재현성을 개선할 수 있음을 의미한다.

Keywords

References

  1. P. Pisani, F. Bray and D.M. Parkin, "Estimation of the Worldwide Prevalence of Cancer for 25 Sites in the Adult Population," International Journal of Cancer Vol. 97 pp. 72-81, 2002. https://doi.org/10.1002/ijc.1571
  2. Y.T. Kim, "Causes and Diagnoses of Cervical Cancer," Journal of the Korean Medical Association, Vol. 50, No. 19, pp. 769-777, 2007. https://doi.org/10.5124/jkma.2007.50.9.769
  3. S.K. Un, C.M. Park, H.C. Park, S.Y. Yoon, M.S. Cho, S.Y. Cho and S.S. Kim, "A Study on Automatic Detection of Uterine Cervical Pap-Smears by Image Processing," Korean Journal of Cytopathology, Vol. 5, No. 1, pp. 15-22, 1994.
  4. K.B. Kim, "Nucleus Segmentation and Recognition of Uterine Cervical Pap-Smear using Enhanced Fuzzy ART Algorithm," Journal of Fuzzy Logic and Intelligent Systems, Vol. 16, No. 5, pp. 519-524, 2006. https://doi.org/10.5391/JKIIS.2006.16.5.519
  5. M.E. Plissiti and C. Nikou, "Automated Detection of Cell Nuclei in Pap Smear Images using Morphological Reconstruction and Clustering," IEEE Transaction on Information Technology in Biomedicine, Vol. 15, No. 2, pp. 233-241, 2011. https://doi.org/10.1109/TITB.2010.2087030
  6. P. Malm and A. Brun, "Closing Curves with Riemannian Dilation: Application to Segmentation in Automated Cervical Cancer Screening," Lecture Notes in Computer Science, Vol. 5875, pp. 337-346, 2009.
  7. P. Malm, A. Brun and E. Bengtsson, "PAPSYNTH: Simulated Bright Field Images of Cervical Smears," Proceedings of IEEE International Conference on Biomedical Imaging, pp. 117-120, Rotterdam, Netherlands, 2010.
  8. G. Burger, U. Jutting and K, Rodenacker, "Changes in Benign Cell-Populations in Cases of Cervical Cancer and It Precursors," Analytical and Quantitative Cytology and Histology, Vol. 3, No. 4 pp. 261-271, 1981.
  9. M. Guillaud, A. Doudkine, D. Gamer, C. MacAulay and B. Palcic, "Malignancy Associated Changes in Cervical Smears: Systematic Changes in Cytometric Features with the Grade of Dysplasia," Analytical Cellular Pathology, Vol. 9, No. 3 pp. 191-204, 1995.
  10. R.A. Kemp, C. MacAulay, D. Garner and B. Palcic, "Detection of Malignancy Associated Changes in Cervical Cell Nuclei using Feed-Forward Neural Networks," Analytical Cellular Pathology, Vol. 14, pp. 31-40, 1997. https://doi.org/10.1155/1997/839686
  11. R.M. Haralick, K. Shanmugam and I. Dinstein, "Texture Feature for Image Classification," IEEE Transaction on Systems, Machines and Cybernetics, Vol. 3, No. 6, pp. 610-621, 1973. https://doi.org/10.1109/TSMC.1973.4309314
  12. C.S. Burrus, R.A. Gopinath and H. Guo, "Introduction to Wavelets and Wavelet Transform" Prentice-Hall, 1998.
  13. A.J. Richard and K.S. Jeffrey, "Applied Multivariate Statistical Analysis" Prentice-Hall, 1997.