DOI QR코드

DOI QR Code

Comparison in Seed and Sprout Quality under Different Cropping Patterns in Mungbean

재배방식에 따른 녹두 종실과 나물의 품질변화

  • Kim, Dong-Kwan (Jeollanamdo Agricultural Research and Extension Services) ;
  • Son, Dong-Mo (Jeollanamdo Agricultural Research and Extension Services) ;
  • Choi, Jin-Gyung (Jeollanamdo Agricultural Research and Extension Services) ;
  • Shin, Hae-Ryong (Jeollanamdo Agricultural Research and Extension Services) ;
  • Chon, Sang-Uk (EFARINET Co. Ltd., TBI Center, Chonsun University) ;
  • Lee, Kyung-Dong (Department of Oriental Medicine Materials, Dongshin University) ;
  • Jung, Ki-Yeol (Department of Functional Crop, NICS, RDA) ;
  • Rim, Yo-Sup (Collage of Bio Industry Science, Sunchon National University)
  • Received : 2011.06.22
  • Accepted : 2011.07.21
  • Published : 2011.09.30

Abstract

This study was performed to determine the relative quality of mungbeans harvested in bulk after applying a labor-saving cultivation (LSC) method, compared to mungbeans harvested three different times under the conventional cultivation condition. There was no significant difference in starch, crude protein, and vitexin or isovitexin content of seed according to the cropping system or harvest time. The mungbeans grown under the LSC method had the highest crude fat content, followed by mungbeans from the third-, the second- and the first-harvest mungbeans under the conventional cultivation. No significant difference was found in the composite ratio of saturated fatty acids to unsaturated fatty acids according to cropping system or harvest time. The second-harvest mungbeans grown under the conventional cultivation condition had 17 different types of fatty acids, while the third-harvest mungbeans grown under the conventional cultivation and those grown under the LSC condition had the fewest types of fatty acids with 12. Of the major saturated fatty acids, palmitic acid and arachidonic acid had the highest composite ratio in the first conventional cultivation followed by the second, the third and the LSC. However, stearic acid showed the opposite tendency. Of the major unsaturated fatty acids, linoleic acid had the highest composite ratio in the first conventional cultivation, followed by the second and third conventional cultivation and the LSC. Amylogram characteristics of the mungbeans were significantly different according to cropping system and harvest times. The mungbeans harvested after the first conventional cultivation had significantly higher pasting temperature, peak viscosity, holding strength viscosity, final viscosity and breakdown, while mungbeans harvested after the third conventional cultivation had significantly higher setback viscosity. In contrast, the mungbeans harvested under the LSC methods had a significantly lower amylogram value. When harvest rate, color values and amino acid content of sprout were measured, mungbeans grown under the LSC conditions had a low harvest rate of sprout, but had Hunter's color values and amino acid content of sprout similar to those of mungbeans grown under the conventional cultivation condition.

본 연구는 남부지역에서 생력재배로 일시수확 및 관행재배로 생산한 녹두의 품질을 구명하고자 수행하였으며 결과는 다음과 같다. 생력재배는 7월 23일에 파종하여 10월 28일 일시에 수확하였고, 관행재배는 6월 13일에 파종하여 8월 중순부터 3차례 손으로 수확하였다. 1. 종실의 전분, 조단백질, vitexin 및 isovitexin 함량은 재배방식과 수확기에 따른 유의차가 없었다. 종실의 조지방 함량은 생력재배, 관행재배 3차, 2차, 1차 수확한 종실 순으로 많았다. 2. 종실의 포화지방산과 불포화지방산의 조성비는 재배방식 및 수확기에 따른 차이가 없었다. 지방산 종류는 관행재배로 2차 수확한 종실에서 17종으로 가장 많았고, 관행재배 3차나 생력재배로 일시에 수확한 종실은 12종으로 가장 적었다. 주요 포화지방산 중에서 palmitic acid와 arachidic acid는 관행재배 1차, 2차, 3차 및 생력재배 수확 순으로 높은 비율인 반면 stearic acid는 반대의 경향이었다. 주요 불포화지방산 중에서 linoleic acid는 관행재배 1차, 2차, 3차 수확 및 생력재배 순으로 조성 비율이 높았다. 3. 종실의 아밀로그램 특성은 재배방식 및 수확기에 따라 큰 차이를 나타냈다. 관행재배로 1차에 수확한 종실은 호화개시온도, 최고점도, 최종점도, 최저점도 및 강하점도가, 관행재배 3차에 수확한 종실은 치반점도가 유의하게 높았다. 반면에 생력재배로 수확된 종실은 모든 아밀로그램 측정값이 현저하게 낮았다. 4. 녹두나물을 생산하고 나물의 수율과 색도 및 아미노산 함량을 측정한 결과, 생력재배로 생산한 녹두는 나물의 생산수율이 낮으나 색도와 아미노산 함량은 관행재배로 수확한 종실을 이용하여 생산한 나물과 비슷하였다.

Keywords

References

  1. Hoeck, J. A., W. R. Fehr, P. A. Murphy, and G. A. Welke. 2000. Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40 : 48-51. https://doi.org/10.2135/cropsci2000.40148x
  2. Jung, S. H., G. J. Shin, and C. U. Choi. 1991. Comparison of physicochemical properties of corn, sweet potato, potato, wheat and mungbean starches. Korean J. Food Sci. Technol. 23(3) : 272-275.
  3. Kim B. J., J. H. Kim, Y. Hea, and H. P. Kim. 1998. Antioxidant and anti-inflammatory activities of the mungbean. Cosmetics & Toiletries magazine. 113 : 71-74.
  4. Kim, D. K., D. M Son, J. K. Choi, S. U. Chon, K. D. Lee, and Y. S. Rim. 2010. Growth property and seed quality of mungbean cultivars appropriate for labor saving cultivation. Korean J. Crop Sci. 55(3) : 239-244.
  5. Kim, D. K., D. M Son, S. U. Chon, K. D. Lee, K. H. Kim, and Y. S. Rim. 2009a. Phenolic compounds content and DPPH, ADH, ALDH activities of mungbean sprout based on growth temperature. Korean J. Crop Sci. 54(1) : 1-6.
  6. Kim, D. K., J. G. Choi, B. J. Jung, D. M. Son, and K. H. Kim. 2009b. Proper seeding time for mechanical harvesting in mungbean. Korean J. Crop Sci. 54(1) : 7-12.
  7. Kim, D. K., J. G. Choi, Y. S. Lee, D. M. Son, J. K. Moon, Y. J. Oh, and K. H. Kim. 2009c. A new mungbean cultivar, "Dahyeon" with many pod and high yielding. Korean J. Breed. Sci. 41(1) : 36-39.
  8. Kim, J. S., S. B. Wang, S. K. Kang, Y. S. Cho, and S. K Park. 2009d. Quality properties of white lotus leaf fermented by mycelial Paecilomyces japonica. J. Korean Soc. Food Sci. Nutr. 38(5) : 594-600. https://doi.org/10.3746/jkfn.2009.38.5.594
  9. Kim, D. K., S. U. Chon, K. D. Lee, J. B. Kim, and Y. S. Rim. 2008a. Variation of flavonoids contents in plant parts of mungbean. Korean J. Crop Sci. 53(3) : 279-284.
  10. Kim, D. K., S. U. Chon, K. D. Lee, K. H. Kim, Y. S. Rim, and S. C. Jeong. 2008b. Effect of seeding times on yield and flavonoid contents of mungbean. Korean J. Crop Sci. 53(3) : 273-279.
  11. Kim, D. K., Y. S. Lee, B. J. Jung, D. M. Son, J. K. Moon, Y. J. Oh, J. B. Kim, and K. H. Kim. 2008c, A new high quality and yield mungbean cultivar "Sohyeon". Korean J. Breed. Sci. 40(4) : 507-511.
  12. Kim, S. R., and S. D. Kim. 1996. Studies on soybean isoflavones. RDA. J. Agri. Sci. 38 : 155-165.
  13. Kim, Y. S. Y. B. Han, Y. J. Yoo, and J. S. Jo. 1981. Studies on the composition of korean mungbean. Korean J. Food Technol. 13(2) : 146-152.
  14. Kitamura, K., K. Ijta, A. Kikuchi, S. Kudou, and K. Okubo. 1991. Low isoflavone content in some early maturinr cultivars, so called "summer-type soybeans". Japan J. Breed. 41 : 651-654. https://doi.org/10.1270/jsbbs1951.41.651
  15. Koh, K. J., D. B. Shin, and Y. C. Lee. 1997. Physicochemical properties of aqueous extracts in small red bean, mungbean and black soybean. Korean J. Food. Sci. Technol. 29(5) : 854-859.
  16. Kweon, M. R. and S. Y. Ahn. 1993. Comparison of physicochemical properties of legume starches. Korean J. Food Sci. Technol. 25(4) : 334-339.
  17. Lee, S. C., T. G. Lim, D. C. Kim, D. S. Song, and Y. G. Kim. 1997. Varietal differences of major chemical components and fatty acid composition in mungbean. Korean J. Crop Sci. 42(1) : 1-6.
  18. Rural Development Administration (RDA). 2003. Evaluation of rice quality and sikmi. pp. 58-74.
  19. Rural Development Administration (RDA). 2006a. Food composition table (7th edition) part I. pp. 78-81.
  20. Rural Development Administration (RDA). 2006b. Food composition table (7th edition) part II. pp. 294-295.
  21. Um, S. H., Y. O. Song, and H. S. Cheigh. 1990. Compositions of lipid class and fatty acid in lipids extracted from mungbean starch. J. Korean Soc. Food Nutr. 19(1) : 87-93.

Cited by

  1. Proper Sowing Time and Planting Density of Intermediate-erect Type Cowpea Strains for Labor-Saving Cultivation vol.59, pp.3, 2014, https://doi.org/10.7740/kjcs.2014.59.3.325
  2. 기능성 소재로서 녹두(Phaseolus aureus L.)의 이화학적 특성 vol.36, pp.4, 2011, https://doi.org/10.12925/jkocs.2019.36.4.1096