DOI QR코드

DOI QR Code

1.5 ㎛ 통신파장대역 진동수 얽힘 광자쌍의 양자간섭

Quantum Interference Experiments with Frequency Entangled Photon Pairs at 1.5 ㎛ Telecommunication Band

  • 김헌오 (울산대학교 물리학과, 기초과학 연구소) ;
  • 김용수 (울산대학교 물리학과, 기초과학 연구소) ;
  • 윤천주 (한국전자통신연구원 광모듈응용기술연구팀) ;
  • 조석범 (SK텔레콤 성장기술원 양자기술연구팀)
  • Kim, Heon-Oh (Department of Physics & Basic Science Research Institute, University of Ulsan) ;
  • Kim, Yong-Soo (Department of Physics & Basic Science Research Institute, University of Ulsan) ;
  • Youn, Chun-Ju (The Convergence Components & Materials Research Laboratory, Electronics and Telecommunication Research Institute) ;
  • Cho, Seok-Beom (Quantum Technology Lab., Emerging Technology R&D Center, SK Telecom)
  • 투고 : 2011.10.18
  • 심사 : 2011.11.22
  • 발행 : 2011.12.25

초록

펨토초 펄스형 자발적 매개하향변환에서 생성된 1.5 ${\mu}m$ 통신파장대역 광자쌍의 진동수 얽힘상태를 구현하고, 광섬유 기반 Hong-Ou-Mandel 간섭계를 이용하여 양자간섭 실험을 수행하였다. 각진동수 ${\omega}_1$${\omega}_2$에 대응하는 두 광자의 파장은 저밀도 파장분할다중화(coarse wavelength division multiplexing, CWDM) 필터를 이용하여 선택하였고, 간섭계에서 경로차에 따른 두 검출기의 동시계수 측정에서 높은 선명도를 갖는 공간적인 맥놀이 형태의 간섭무늬를 관측하였다.

We performed experiments on Hong-Ou-Mandel type two-photon interference with frequency entangled photon pairs at 1.5 ${\mu}m$ telecommunication band generated through femtosecond pulsed spontaneous parametric down-conversion. Two different angular frequencies ${\omega}_1$ and ${\omega}_2$ were selected using CWDM(coarse wavelength division multiplexing) filters at the output ports of the interferometer. The coincidence counting rates were measured with varying path-length difference between the two interferometer arms to observe the two-photon interference patterns of spatial beating. The obtained visibilities in the net coincidence were close to the theoretical limit of 100%.

키워드

참고문헌

  1. A. M. Steinberg, R. Y. Chiao, and P. G. Kwiat, "Quantum optical tests of the foundations of physics," in Atomic, Molecular, and Optical Physics Handbook, G. W. F. Drake, ed. (AIP Press, Woodbury, NY, USA, 1996).
  2. G. Jaeger and A. V. Sergienko, "Multi-photon quantum interferometry," Progress in Optics 42, 277-324 (2001). https://doi.org/10.1016/S0079-6638(01)80019-6
  3. Y. Shih, "Entangled biphoton source-property and preparation," Rep. Prog. Phys. 66, 1009-1044 (2003). https://doi.org/10.1088/0034-4885/66/6/203
  4. Z.-S. Yuana, X.-H. Baoa, C.-Y. Lua, J. Zhanga, C.-Z. Penga, and J.-W. Pan, "Entangled photons and quantum communication," Physics Reports 497, 1-40 (2010). https://doi.org/10.1016/j.physrep.2010.07.004
  5. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Zukowski, "Multiphoton entanglement and interferometry," to be published in Rev. Mod. Phys. (2011).
  6. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys. 79, 135-174 (2007). https://doi.org/10.1103/RevModPhys.79.135
  7. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987). https://doi.org/10.1103/PhysRevLett.59.2044
  8. Z. Y. Ou and L. Mandel, "Observation of spatial quantum beating with separated photodetectors," Phys. Rev. Lett. 61, 54-57 (1988). https://doi.org/10.1103/PhysRevLett.61.54
  9. H. Kim, J. Ko, and T. Kim, "Two-particle interference experiment with frequency-entangled photon pairs," J. Opt. Soc. Am. B 20, 760-763 (2003). https://doi.org/10.1364/JOSAB.20.000760
  10. H. Kim, J. Ko, and T. Kim, "Quantum-eraser experiment with frequency-entangled photon pairs," Phys. Rev. A 67, 054102 (2003). https://doi.org/10.1103/PhysRevA.67.054102
  11. W. Tittel, J. Brendel, B. Gisin, T. Herzog, H. Zbinden, and N. Gisin, "Experimental demonstration of quantum correlations over more than 10 km," Phys. Rev. A 57, 3229-3232 (1998). https://doi.org/10.1103/PhysRevA.57.3229
  12. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of bell inequalities by photons more than 10 km apart," Phys. Rev. Lett. 81, 3563-3566 (1998). https://doi.org/10.1103/PhysRevLett.81.3563
  13. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005). https://doi.org/10.1103/PhysRevLett.94.053601
  14. T.-G. Noh, H. Kim, C. J. Youn, S.-B. Cho, J. Hong, T. Zyung, and J. Kim, "Noncollinear correlated photon pair source in the 1550 nm telecommunication band," Opt. Express 14, 2805-2810 (2006). https://doi.org/10.1364/OE.14.002805
  15. S.-B. Cho and T.-G. Noh, "Two-photon quantum interference in the 1.5 μm telecommunication band," Opt. Express 15, 7591-7595 (2007). https://doi.org/10.1364/OE.15.007591
  16. T.-G. Noh, H. Kim, T. Zyung, and J. Kim, "Efficient source of high purity polarization-entangled photon pairs in the 1550 nm telecommunication band," Appl. Phys. Lett. 90, 011116 (2007). https://doi.org/10.1063/1.2429025
  17. X. Li, L. Yang, X. Ma, L. Cui, Z. Y. Ou, and D. Yu, "All-fiber source of frequency-entangled photon pairs," Phys. Rev. A 79, 033817 (2009). https://doi.org/10.1103/PhysRevA.79.033817
  18. T. Suhara, "Generation of quantum-entangled twin photons by waveguide nonlinear-optic devices," Laser & Photon. Rev. 3, 370-393 (2009). https://doi.org/10.1002/lpor.200810054
  19. J. G. Rarity and P. R. Tapster, "Two-color photons and nonlocality in fourth-order interference," Phys. Rev. A 41, 5139-5146 (1990). https://doi.org/10.1103/PhysRevA.41.5139
  20. O. Kwon, Y.-W. Cho, and Y.-H. Kim, "Quantum random number generator using photon-number path entanglement," Appl. Opt. 48, 1774-1778 (2009). https://doi.org/10.1364/AO.48.001774