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In this letter, we present a new approximation for the two-
dimensional (2-D) Gaussian Q-function. The result is 
represented by only the one-dimensional (1-D) Gaussian Q-
function. Unlike the previous 1-D Gaussian-type 
approximation, the presented approximation can be applied to 
compute the 2-D Gaussian Q-function with large correlations. 
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I. Introduction 
The two-dimensional (2-D) Gaussian Q-function has been 

used in evaluating the error and outage probability 
performance of wireless communication systems. The 2-D 
Gaussian Q-function representation has been proposed to 
compute the probability of an arbitrary wedge-shaped region in 
the presence of additive white Gaussian noise (AWGN) [1]-[5]. 
Alouini and others developed the 2-D Gaussian Q-function 
expression to compute various outage probabilities of dual 
diversity systems over correlated lognormal fading channels 
[6]. Simon gave the Craig-form representation for the 2-D 
Gaussian Q-function [7], and Park and others presented the 
alternative form of the representation [8]. Here, the Craig-form 
representation requires numerical integral operations. Chiani 
and others derived the exponential-type approximation with a 
square of the argument in the exponent for the one-dimensional 
(1-D) Gaussian Q-function [9]. The series expansion of the 2-D 
Gaussian Q-function uses the 1-D Gaussian Q-function and the 
derivatives of the Gaussian probability density function (pdf) as 
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in equation (26.3.29) in [10]. Several series expansions of the  
1-D Gaussian Q-function have recently been published [11]- 
[15]. Lin gave the 1-D Gaussian Q-function-type approximation 
for the 2-D Gaussian Q-function in equation (6) in [16]. We 
notice that the relative errors of the approximation obtained by 
Lin increase as the correlation coefficient approaches -1. 
Therefore, given that it would be valuable to obtain a new 1-D 
Gaussian Q-function-type approximation for the 2-D Gaussian 
Q-function in a way that increases accuracy, we focus on the 
new approximation represented by the 1-D Gaussian Q-function. 

In this letter, we derive a new approximation for the 2-D 
Gaussian Q-function by using the 1-D Gaussian Q-function 
approximation developed by Chiani and others. 

II. Derivation of Approximation 

It is known that the 2-D Gaussian Q-function is defined by  
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The 2-D Gaussian Q-function can be also rewritten as in 
equation (26.3.20) in [10] as 
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in which sgn(u)=1 if 0,u ≥ and sgn(u)= -1 if 0.u < Furthermore, 
letting y=0 in Q(x, y; ρ) and using equations (26.3.7) and (26.3.8) 
in [10], the following two relations are given: 

( ,0; ) 1/ 2 ( ,0; )Q x Q xρ ρ− = − − ,          (6) 

( ,0; ) ( ) ( ,0; )Q x Q x Q xρ ρ= − − .         (7) 

As given in [16], we consider the case of Q(x, 0; ρ), when 
0 and 0,x ρ≥ <  to compute the general 2-D Gaussian Q-

function. The relation Q(x, 0; ρ) can be expressed using 
equation (26.3.2) in [10] and equation (4) in [16] as 

  
2

2

exp( / 2)( ,0; ) ,
2 1x

t tQ x Q dtρρ
π ρ

∞ ⎛ ⎞− ⎜ ⎟= −
⎜ ⎟−⎝ ⎠

∫      (8) 

where 0 and 0.x ρ≥ <  The 1-D Gaussian Q-function Q(x) 
is defined by 
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There are various series expansions of the 1-D Gaussian Q-
function ( )Q ⋅  [11]-[15]. 

Finally, substituting equation (14) from [9] into (8) gives the 
new approximation for the Q(x, 0; ρ) as 
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where 0 and 0.x ρ≥ <  Note that the numerical validation 
of (10) depends on that of equation (14) in [9].  

III. Numerical Results 

In this section, we demonstrate the validity of the presented 
approximation. The relative errors were computed to compare 
the new approximation, (10), with the previous approximation, 
equation (6) in [16], for four special cases: ρ= -0.5, ρ= -0.6,  
ρ= -0.7, and ρ= -0.8. 

Figure 1 shows that the relative errors of previous 
approximation increase as the correlation coefficient 
approaches -1, whereas the new approximation, (10), has 
small relative errors for 0.6.ρ ≥ −  That is, the relative errors of 
the new approximation are smaller than those of the previous 
one when the correlation coefficient approaches -1. 
For 0.6,ρ ≥ −  the new approximation also becomes available 
by using (7). Therefore, the presented expression can be used 
for an approximation in computing the 2-D Gaussian Q-
function with large correlations. 

 

Fig. 1. Comparison of the relative errors in (10) and the results in
equation (6) in [16]. 

0 5 10 15 20
10-5

10-3

10-1

101

103

105

107

109

1011

1013

1015

1017

ρ = -0.5 

ρ = -0.8 

ρ = -0.7

ρ = -0.6R
el

at
iv

e 
er

ro
rs

 

x 

 Previous approximation (6) in [16] 
 New approximation (10) 

 
 

IV. Applications 

In this section, we present three applications of the derived 
approximation. First, we consider the analytical expression for 
the symbol-error probability (SEP) of an M-ary phase shift 
keying (MPSK) system over AWGN channels. The 
approximation for the SEP of MPSK can be obtained by using 
equation (20) in [1] and (10) as 
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where ES is the signal energy, N0 is the noise power, and M is 
the size of constellation with M>2. Figure 2 shows good 
agreement between equation (20) in [1] and (11) for various 
values of M. 

Also, as a second application, two 2-D Gaussian Q-function 
representations for both the probability of a wedge-shaped 
region over AWGN channels and the outage probability of a 
dual-branch selection combining system over correlated 
lognormal fading channels [5]-[6] have been recently presented. 
Here, applying (1), (6), and (7) to equation (12) in [5] and  
equation (42) in [6] and using (10) results in two corresponding 
approximations which are computed by only the 1-D Gaussian 
Q-function. 

Next, we will consider the other application. The integral of 
the standardized circular normal distribution over the bounded 
triangle, V(h, ah), plays a key role in computing the probability 
of a polygon over AWGN channels as seen in example 9 
presented in [10]. The quantity of V(h, ah) is computed as in 
equation (26.3.23) in [10] as 
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Fig. 2. Comparison of the SEP between exact values in equation
(20) in [1] and results in (11) for various M. 
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where 2/ 1 .r a a= − +   
Finally, applying equation (26.3.19) in [10] and (10) to (12) 

leads to the following approximation for V(h, ah): 
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Note that the relation between V(h, ah) and the 2-D Gaussian 
Q-function is provided in equation (46.51) in [17]. 

V. Conclusion 

A new 1-D Gaussian-type approximation for the 2-D 
Gaussian Q-function has been presented. The numerical results 
have shown that the presented approximation can be applied to 
compute the 2-D Gaussian Q-function with large correlations. 
The new approximation is numerically more useful in 
computing the 2-D Gaussian Q-function by employing the 
built-in series expansion of 1-D Gaussian Q-function without 
various numerical integration techniques. 
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