Assessment of Applicability of a Calcium Carbonate-Alginate Beads as Neutralizer for the High Cell Density Cultivation of Isolated Sourdough Lactic Acid Bacteria

Sourdough에서 분리된 유산균의 고농도 배양을 위한 중화제로서 Calcium Carbonate-Alginate Bead의 이용가능성 평가

  • Jung, Seung-Won (Department of Food Science & Technology, Dongguk University) ;
  • Lee, Kwang-Geun (Department of Food Science & Technology, Dongguk University) ;
  • Kim, Cheol Woo (Korea Advanced Food Research Institute) ;
  • Lee, Su Han (Department of Food Technology and Services, Eulji University)
  • 정승원 (동국대학교 식품생명공학과) ;
  • 이광근 (동국대학교 식품생명공학과) ;
  • 김철우 (한국식품공업협회) ;
  • 이수한 (을지대학교 식품산업외식학과)
  • Received : 2010.05.28
  • Accepted : 2010.07.05
  • Published : 2010.08.30

Abstract

Lab scale experiments were conducted in order to assess the applicability of $CaCO_{3}$-alginate beads as neutralizer for the high cell density cultivation and prepare the direct vat inoculation cultures of isolated sourdough lactic acid bacteria. With increasing the amount of bead and decreasing the diameter of bead in acidic solution, the neutralizing effect of $CaCO_{3}$-alginate bead became higher. In batch process with $CaCO_{3}$-alginate beads, Lactobacillus amylovorus DU-21 isolated from sourdough showed the highest viable cell counts and optical density in MRS broth. The values of viable cell counts and optical density were 9.996 log CFU/mL and 3.97, respectively. Experiments on the conditions which increase viability during lyophilization were carried out and the following results were obtained; 15% glycerol revealed the high cryoprotective effect on the concentrated cultures during lyophilization among the two cryoprotective agents. Consequently, $CaCO_{3}$-alginate beads and 15% glycerol were found to be useful not only to cultivate Lactobacillus amylovorus DU-21 but also to preserve strain.

유산균을 고농도로 배양하기 위하여 $CaCO_3$를 각각 15% 와 20%씩 첨가하여 직경이 서로 다른 $CaCO_3$-alginate beads를 제조한 후, lactic acid에 대한 $CaCO_3$-alginate beads의 반응 특성과 완충효과를 관찰하였으며, lactic acid에 대하여 완충작용이 있는 $CaCO_3$-alginate beads를 이용하여 S. thermophilus ST-Body 1과 L. amylovorus DU-21을 고농도 배양하여 직접투입식 starter를 제조하였다. 본 연구에서 제조된 $CaCO_3$-alginate beads는 $CaCO_3$, alginate 함량 및 수분 함유율이 beads에 일정하게 고루 분포되어 있으며, 일정한 밀도를 갖는 입자임을 알 수 있었다. 또한 lactic acid에 대한 beads의 반응은 표면으로부터 일어나기 시작하여 내부로 진행됨을 확인하였으며, $CaCO_3$-alginate beads 양의 증가는 결국 lactic acid와 반응할 수 있는 $CaCO_3$ 표면적의 증가를 가져오게 되며, 단위시간당 lactic acid와 반응하는 $CaCO_3$의 상대적 증가를 가져오기 때문에 $CaCO_3$-alginate beads 양의 증가는 lactic acid 용액 내부의 중화작용의 증가를 가져온다는 것을 확인하였다. 즉, $CaCO_3$-alginate beads의 직경이 작을수록, 내부의 $CaCO_3$ 함량이 높을수록, 단위 부피당 넓은 표면적과 높은 중화작용을 가지므로 $CaCO_3$-alginate beads를 pH neutralizer로 이용하여 유산균을 배양할 경우에는 $CaCO_3$ 함량이 높고 직경이 작은 $CaCO_3$-alginate beads의 이용이 유산균 배양에 효과적임을 알 수 있었다. $CaCO_3$-alginate beads를 이용한 유산균의 고농도 배양시, pH와 생균수와의 상관성과 선형관계를 단순회귀분석법(simple regression)을 이용하여 최소자승추정량(least square estimator; LSE)을 구하여 검증한 결과, 각 X의 회귀계수의 값은 통계적으로 유의한 결과(p<0.05, p<0.01)를 보였다. 또한 $R^2$ 값은 S. thermophilus ST-Body 1와 L. amylovorus DU-21의 경우, $CaCO_3$-alginate beads 무첨가구와 첨가구에서 각각 0.6310, 0.7505, 0.7452, 0.7609이였다. 이는 pH가 균 증식에 다소나마 영향을 주는 것을 나타낸다. 고농도로 배양된 S. thermophilus ST-Body 1과 L. amylovorus DU-21 균주를 이용하여 직접투입식 starter를 제조한 결과, 동결건조 보호제로 15% glycerol을 이용하였을 때 각각 91.96${\pm}$1.35%와 89.09${\pm}$4.49%의 생존율을 보였다. 본 연구에서 확립된 기법은 probiotics 조제나 정장제 조제방법에 있어서도 공히 적용 가능하므로 미생물 세포의 이용기법으로 그 생존율과 발효에 연관되는 기능보존과 수반되는 여러 분야에 적용한다는 면에서 산업적으로 중요하다고 사료된다.

Keywords

References

  1. AOAC. 1995. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemist. Washington DC, USA, pp. 988-989.
  2. Blancerte-zurita, MA, Branion RMR, Lawrence RW. 1985. Particle size effects in the microbiological leaching of sulfide concentrates by thiobacillus ferrooxidans. Biotech. Bioeng. 28: 751-755.
  3. Christian C, Madec MN, Patrick B. 1992. Production of concentrated Bifidobacterium bifidum. J. Chem. Tech. Biotechnol. 53: 189-198.
  4. Cho AR. 2001. Preparation and characterization of alginate-chitosan microsphere for controlled delivery of silver sulfadiazine. J. Kor. Pharm. Sci. 31: 101-106.
  5. De Valdez G, De GiorideRuiz HF, Oliver G. 1986. Composition of the recovery medium and its influence on the survival of freezedried lactic acid bacteria. Milchwissenschaft 41: 286-288.
  6. Dumitriu S. 1996. Polysaccharides in Medicinal Chemistry. Marcel Dekker, New York, USA, pp. 197-198.
  7. Ha DM. 2002. Food Microbiology. Shinkwang Publishing Co., Seoul, Korea, pp. 221-272.
  8. Jeon SR, Song TS, Kim JY, Shin WC, Her SW, Yoon SS. 2007. Identification and characterization of lactic acid bacteria starters isolated from the commercial drink-yogurt products. Korean J. Food Sci. Ani. Resour. 27: 509-516. https://doi.org/10.5851/kosfa.2007.27.4.509
  9. Jung SW, Kim WJ, Lee KG, Kim CW, Noh WS. 2008. Fermentation characteristics of exopolysaccharide-producing lactic acid bacteria from sourdough and assessment of the isolates for industrial potential. J. Microbiol. Biotechnol. 18: 1266-1273.
  10. Jung SW, Kim WJ, Lee KG, Kim CW, Noh WS. 2009. Isolation and identification of lactic acid bacteria from sourdough with high exopolysaccharide production ability. Food Sci. Biotechnol. 18: 384-389.
  11. Kang IK, Kwon SJ, Kim JH, Kim CW, Park KC, Park NH, Oh SH, Jung HC, Han DS. 1981. Basic chemistry. In: Acid, Base and Buffer Agent. Hyung Seul Publishing Co., Seoul, Korea, pp. 294-296.
  12. Kim SD, Kim MH, Kim MK, Kim ID. 1997. Neutralization and buffer effect of crab shell power in Kimchi. J. Korean Soc. Food Sci. Nutr. 26: 569-574.
  13. Koyama K, Seki M. 2004. Evaluation of mass-transfer characteristics in alginate-membrane liquid-core capsules prepared using polyethylene glycol. J. Biosci. Bioeng. 98: 114-121.
  14. Leach RH, Scott WJ. 1959. The influence of rehydration medium on viability of dried microorganisms. J. Gen. Microbiol. 21: 295-307. https://doi.org/10.1099/00221287-21-2-295
  15. Lee KY, Hwang IB, Heo TR. 1997. Enhancement of cultivation efficiency of Bifidobacterium longum using calcium carbonate buffer system. Korean J. Food Sci. Technol. 29: 126-132.
  16. Murata Y, Sasaki N, Miyamoto E, Kawashima S. 2000. Use of floating alginate gel beads for stomach-specific drug delivery. Eur. J. Pharm. Biopharm. 50: 221-226. https://doi.org/10.1016/S0939-6411(00)00110-7
  17. Murata Y, Nakada K, Miyamoto E, Kawashima S. Seo SH. 1993. Influence of erosion of calcium-induced alginate gel matrix on the release of brilliant blue. J. Control Release 23: 21-26. https://doi.org/10.1016/0168-3659(93)90067-F
  18. Open U, Thames P. 1992. The effect pH on growth. In: In Vitro Cultivation of Microorganisms. Butterworth-Heinemann Ltd., Linacre House, Jordan Hill, Oxford, UK, pp. 35-36.
  19. Rhee HS, Lee GJ. 1994. Effects of preheating treatment and chitosan addition on the textural properties of Korean radish during salting. Korean J. Dietary Culture. 9: 53-59.
  20. Ryoo HJ, 2006. Lactic acid fermentation characteristics of liquorice extract by the immobilized lactic acid. PhD thesis, Dongguk University, Seoul, Korea.
  21. Salle AJ. 1961. Fundamental Principles of Bacteriology. McGraw-Hill Inc., New York, NY, USA, pp. 236-237.
  22. SAS Institute Inc. 1990. SAS User's Guide. Statistical Analysis System institute, Cary, NC, USA.
  23. Shuler ML, Kargi F. 2000. Bioprocess Engineering. Prentice-Hall Inc., Englewood Cliffs, NJ, USA, pp. 185-186.
  24. Tiemin J, Xin S, Jian W, Lijun C. Weiming Z. 2005. Discuss on the propagation of lactic acid bacteria for preparation of direct vat inoculation. Food Ferment. Ind. 31: 112-114.
  25. Thu B, Bruheim P, Espevik T, Smidsr d O, Soon-Shing P, Skj k-Bræk. 1996. Alginate polycation microcapsules. Biomaterials 17: 1031-1040. https://doi.org/10.1016/0142-9612(96)84680-1
  26. Yu WK, Kim JY, Lee KY, Heo TR. 2002. High cell density cultivation of Bifidobacterium longum using a calcium carbonate-alginate beads system. J. Microbiol. Biotechnol. 12: 444-448.