모과내 기능성 유용성분 용매추출공정의 최적화

Optimization of Solvent Extraction Process on the Active Functional Components from Chinese Quince

  • 전주영 (경북대학교 식품공학과) ;
  • 조인희 (경북대학교 식품공학과) ;
  • 경현규 (경북대학교 식품공학과) ;
  • 김현아 (경북대학교 응용생명과학부) ;
  • 이창민 (경북대학교 응용생명과학부) ;
  • 최용희 (경북대학교 응용생명과학부)
  • Jeon, Ju-Yeong (Department of Food Science and Technology, Kyungpook National University) ;
  • Jo, In-Hee (Department of Food Science and Technology, Kyungpook National University) ;
  • Kyung, Hyun-Kyu (Department of Food Science and Technology, Kyungpook National University) ;
  • Kim, Hyun-A (Department of Applied Biosciences, Kyungpook National University) ;
  • Lee, Chang-Min (Department of Applied Biosciences, Kyungpook National University) ;
  • Choi, Yong-Hee (Department of Applied Biosciences, Kyungpook National University)
  • 투고 : 2010.01.06
  • 심사 : 2010.03.08
  • 발행 : 2010.05.30

초록

본 연구에서는 모과내의 여러 가지 기능성 유용성분을 효과적으로 추출하기 위해서, 모과나무의 익은 열매로 만든 약재인 모과를 사용 하였다. 모과의 기능성 유용성분 용매 추출 공정의 최적 조건을 확립하고자 하였다. 모과를 에탄올에 추출하여 반응표면 분석법으로 모니터링하여 최적 용매 조건을 설정하였다. 중심합성계획법에 따라 시료에 대한 용매비($X_{1}$)와 추출온도($X_{2}$), 추출시간($X_{3}$)을 요인변수로 하고 추출수율($Y_{1}$), 총 페놀 함량($Y_{2}$), 전자공여능($Y_{3}$), 갈색도($Y_{4}$), 환원당($Y_{5}$)을 종속변수로 하여 시행하였다. 실험 결과 추출수율은 추출 온도와 추출 시간에 유의하게 영향을 받음을 알 수 있었다. 안장점에서 추출조건은 시료에 대한 용매비는 26.38 mL/g, 추출온도는 72.82$^{\circ}C$, 추출시간은 74.86 min에서 최대값을 나타내었다. 총페놀 함량은 용매비와 시간에 영향을 거의 받지 않았고 추출시간에는 영향을 받았으며, 최대값은 20.70 mg/mL 로 나타났다. 이때의 추출조건은 시료에 대한 용매비는 22.61 mL/g, 추출온도는 84.49$^{\circ}C$, 추출시간은 77.25 min으로 나타났다. 전자공여능은 추출온도에 따라 유의하게 영향을 받은 것으로 나타났다. 안장점에서의 추출조건인 시료에 대한 용매비 10.65 mL/g, 추출온도 67.78$^{\circ}C$, 추출시간 96.75 min에서 추출수율은 94.12%로 예측되었다. 갈색도에 대한 추출조건은 시료에 대한 용매비 23.77 mL/g, 추출온도 87.27$^{\circ}C$, 추출시간 96.68 min 일 때 안장점이 나타났다. 환원당은 시료에 대한 용매비 26.83 mL/g, 추출온도 82.167$^{\circ}C$, 추출시간 81.94 min에서 10.55 mg/mL로 최대값을 나타내었고 추출시간에 영향을 받았다.

In this study, various active functional components in Chinese Quince were extracted by solvent extraction method. A central composit design for optimization was applied to investigate the effects of independent variables such as solvent to sample ratio ($X_{1}$), extraction temperature ($X_{2}$), and extraction time ($X_{3}$) on the soluble solid contents ($Y_{1}$), total phenols ($Y_{2}$), electron donating ability ($Y_{3}$), browning color ($Y_{4}$) and reducing sugar contents ($Y_{5}$). It was found that extraction temperature and extraction time were the main effective factors in this extraction process. The maximum soluble solid contents of 35.77% was obtained at 26.38 mL/g ($X_{1}$), 72.82$^{\circ}C$ ($X_{2}$) and 74.86 min ($X_{3}$) in saddle point. Total phenols were rarely affected by solvent ratio and extraction time, but it was affected by extraction temperature. The maximum total phenols of 20.70% was obtained at 22.61 mL/g ($X_{1}$), 84.49$^{\circ}C$ ($X_{2}$), 77.25 min ($X_{3}$) in saddle point. The electron donating ability was affected by extraction time. The maximum electron donating ability of 94.12% was obtained at 10.65 mL/g ($X_{1}$), 67.78$^{\circ}C$ ($X_{2}$), 96.75 min ($X_{3}$) in saddle point. The maximum browning color of 0.32% was obtained at 23.77 mL/g ($X_{1}$), 87.27$^{\circ}C$ ($X_{2}$), 96.68 min ($X_{3}$) in saddle point. The maximum value of reducing sugar content of 10.55% was obtained at 26.83 mL/g ($X_{1}$), 82.167$^{\circ}C$ ($X_{2}$), 81.94 min ($X_{3}$). Reducing sugar content was affected by extraction time.

키워드

과제정보

연구 과제 주관 기관 : 농촌진흥청

참고문헌

  1. Adelson R, Saul RL, Ames BN. 1988. Oxidative damage to DNA: Relation to species metabolic and life span. Natl. Acad. Sci. USA. 85: 2706-2708. https://doi.org/10.1073/pnas.85.8.2706
  2. Amerine MA, Ough CS. 1980. Methods for analysis of musts and win. Wiley & sons, NY, USA, pp. 176-180.
  3. Barene AL. 1975. Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytoluen. J. Am. oil. Chem. Soc. 52: 59-63. https://doi.org/10.1007/BF02901825
  4. Bendish A, Machlin L, Scadurra O, Burton GW. 1985. Theantioxidant role of vitamin C. Free Radical Biol. Med. 2: 419-444.
  5. Bios MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  6. Chan KM, Decker EA, Means WJ. 1993. Extraction and activity of camosine a naturally occurring antioxidant in beef muscle. J.Food Sci. 58: 1-4. https://doi.org/10.1111/j.1365-2621.1993.tb03199.x
  7. Chung TY, Kim EK. 1990. Antioxidative Effect of Chaenomelis Fructus. Korean J. Agric Chem. Soci. 33: 361.
  8. Gao H, Wu L, Kuroyanagi M, Harada K, Kawahara N, Nakane T, Umehara K, Hirasawa A. Nakamura Y. 2003. Antitumor-promoting constituents from Chaenomeles sinensis KOEHNE and their activities in JB6 mouse epidermal cells. Chem. Pharm. Bull (Tokyo). 51: 1318-1321. https://doi.org/10.1248/cpb.51.1318
  9. Hamauzu Y, Yasui H, Inno T, Kume C, Omanyuda M. 2005. Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese uince (Pseudocydonia sinensis Schneid), quince (Sydonia obonga Mill.) and apple (Malus domestica Mill.) Fruits. J. Agric. Food Chem. 53: 923-934. https://doi.org/10.1021/jf048957z
  10. Hong MH. 1995. The food story that can be made of chinese herbal medicine. Artmedia, Seoul, Korea, pp. 206-207.
  11. Ito N, Fukushima S, Hasebawa A. 1983. Carcinogenicity of BHA in F344 rat. J. Natl. Cancer Inst. 70 : 343-352.
  12. Jing Z. 1997. Preparation of medicine for recovery and replenishingliver. CN-1124153.
  13. Kim IW, Shin DH, Choi U. 1999. Isolation of antioxidative components from the bark of Rhus verniciflua S. screened from some Chinese medicinal plants. Korean J. Food Sci. Technol. 31: 885-863.
  14. Lee CB. 1982. Forest Economics-mokchogangmok. Korean plant map. Hyangmunsa, Seoul, Korea, p. 29.
  15. Lee DH, Kim JH, Kim NM, Choi JS, Lee JS. 2002 Physiological functionality of chinese quince wine and liqors. Korean J. Biotechnol. Bioeng. 17: 266-270.
  16. Lee MH, Son YK, Han YN. 2002. Tissue Factor inhibitory flavonoids from the fruits of Chaenomeles sinensis. Arch. Pharm. Res. 25: 327-331.
  17. Lee YM, Shin HD, Lee JJ, Lee MY. 2006. Antioxidative Effect of Chaenomelis Fructus Ethanol Extract. Korean. J. Soc. Food Sci. Nutr. 14: 177-182.
  18. Li Y. 1997. Medicine for curing stomach cancer. CN-1100951.
  19. Liang Z. 1997. Medicine for e.g. changing white hair into black. CN-1114577.
  20. Matsuda H, NaKamura S, Kubo M. 1994. Studies of cuticle drugs from natural sources. 4. Inhibitory effects of Prunus plants on melanin biosynthesis. Biol. Pharm. Bull. 17: 1417-1420. https://doi.org/10.1248/bpb.17.1417
  21. Park JH, Lee CK. 2000. The encyclopedia of medicinal plants. Shinilbooks, Seoul, Korea, p. 133.
  22. Rhim JW, Nunes RV, Jones, Swartzel BA. 1989. Kinetics of color chang of grape juice generatde using linearly increasing temperature. J. Food Sci. 54: 776-777. https://doi.org/10.1111/j.1365-2621.1989.tb04710.x
  23. Shin YJ, Han DS, Kim SJ, Kim IH. 2000. Ability of Lipophilic Extract Obtained from Plants to Inhibit Tyrosinase Activity in Reverse Micelles. Korean J. Food Sci. Technol. 32: 736-741.
  24. Wu X. 1997. Traditional chinese medicine for curing rheumatism. CN-1110584.