Isolation and Characterization of Thermophilic Microorganism Producing Starch-hydrolyze Enzyme

한국 토양으로부터 전분가수분해효소를 생산하는 고온성 균주의 선별과 동정

  • Choi, Wonseok (Department of Food Engineering, Dankook University) ;
  • Bai, Dong-Hoon (Department of Food Engineering, Dankook University)
  • 최원석 (단국대학교 식품공학과) ;
  • 배동훈 (단국대학교 식품공학과)
  • Received : 2009.10.22
  • Accepted : 2010.01.12
  • Published : 2010.02.28

Abstract

A thermophilic microorganism, which is able to hydrolyze starch, was isolated from soil and compost in Korea. It was Gram-positive, rod-shaped, catalase positive, nonmotile, glucose and mannitol fermentative, xylose oxidative, and spore forming microorganism. It also has an ability to hydrolyze casein and gelatin. The color of colony was yellowish white. The sequence of 16S rDNA of strain 2719 showed 99.5% sequence homology with the sequence of 16S rDNA of Bacillus thermoglucosidasius. On the basis of biochemical and physiological properties and phylogenetic analysis, the isolated strain was named as Bacillus thermoglucosidasius 2719.

호열성 미생물을 검토하기 위하여 전국 각지로부터 토양과 두엄을 채취하여 그로부터 호열성 미생물을 분리하였다. 토양과 두엄으로부터 분리된 호열성 미생물 1250여 균주를 선별하였고, 이들을 대상으로 미생물이 생산하는 효소 활성을 검토하여 호열성 전분 분해 효소를 생산하는 1주의 미생물을 확인하였다. 확인된 1주의 미생물을 strain 2719라 명명하였다. Strain 2719 균주는 형태학적으로 gram 양성 간균의 특징을 나타냈고, 균주의 표면은 매끄럽지 않았으며, 비교적 다양한 길이를 가지고 있었다. 또한 다른 gram 양성 간균들에 비해서 많은 수의 균사들이 각 균주들 사이에 복잡하게 얽혀있었다. 생화학적 특성을 확인한 결과 catalase 양성, glucose 발효, arabinose 발효, mannitol 발효, casein gelatin starch 가수분해의 특징을 가지고 있었으며, 이는 Bacillus sp.로 추정되었다. 생육 pH의 범위는 pH 6-pH 8범위에서 생육이 가능했으며, 생육 온도의 범위는 50-70${^{\circ}C}$였다. 16S rDNA sequence 분석결과 Bacillus thermoglucosidasius의 16S rDNA와 99.52%가 일치하였으나, sequence의 일부분이 다른 부분이 있고, 생육 특성에서 약간의 차이를 보였다. 또한 gene bank에 등록되어 있는 균주들의 16S rDNA sequence들과 비교하여도 일치하는 균주는 확인되지 않았다. 이와 같은 실험결과에 따라 2719 균주는 기존에 발표되지는 않았으나, Bacillus thermoglucosidasius와 매우 유사한 균주로 판단되어 Bacillus thermoglucosidasius 2719로 명명하였다.

Keywords

References

  1. Adams MW, Perler FB, Kelly RM. 1995. Extremozymes; expanding the limits of biocatalysis. Biotechnol. 13: 662-668 https://doi.org/10.1038/nbt0795-662
  2. Bourgault AM, Lamothe F. 1988. Evaluation of the KOH test and the antibiotic disk test in routine clinical anaerobic bacteriology. J. Clin. Microbiol. 26: 2144-2166
  3. Brock DT. 1978. Thermophilic microorganism and life at high temeratures. Springer series, Springer Publishing Company, New York, NY, USA, pp. 51-56
  4. Emtiazi G, Nahvi I. 2004. Production of thermostable α-amylase and cellulase from Cellulomonas sp.. J. Microbiol. Biotechnol. 14: 1196-1199
  5. Forarty WM. 1983. Microbial amylases. In; Microbial Enzymes and Biotechnology, Applied Science Publishers, London, UK, pp 1-92
  6. Frederick M, Roger AB, Kingston RE, More D, Seidman JG, Smith JA, Struhl K. 1992. Short protocols in molecular biology. Fourth edition. Wiley John & Sons Inc., Somerset, NJ, USA
  7. Greenwood CF, Milne EA. 1962. Advances in carbohydrate chemistry, Academic press, New York, NY, USA, pp. 23-281
  8. Igarashi K, Hatada Y, Hagihara H, Saeki K, Takaiwa M, Uemura T, Ara K, Ozaki K, Kawai S, Kobayashi T, Ito S. 1998. Enzymatic properties of a novel liquefying $\alpha$-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequence. Appl. Environ. Microbiol. 77: 3282-3289
  9. Kim, HK, Kim KH, Lee JK, Kim YO, Nam HS, Oh, TK. 1995a. Characterization of a thermostable protease from thermophilic Bacillus amyloliquefaciens NS 15-4. Korean J. Appl. Microbiol. Biotechnol. 23: 322-328
  10. Kim IC, Jang SY, Cha JH, Go YH, Park GH. 1988. Cloning and expression of thermostable alpha-amylase gene in Escherichia coli from Bacillus licheniformis ATCC 27811, Korean J. Appl. Microbiol. Biotechnol. 16: 369-369
  11. Kim JW, Kim SH, Jin IR. 1995b. The fermentation characteristics of Saccharomyces cerevisiae F38-1. a thermotolerant yeast isolated for fuel alcohol production at elevated temperature, Korean J. Appl. Microbiol. Bioeng. 23: 624-631
  12. Kreig NR Halt JG. 1984. Bergey's Manual of Systematic Bacteriology. Williams and Wilkins Co.,
  13. Lee YE. 1998. Isolation and characterization of a thermophilic Bacillus sp. producing a thermostable α-glucosidase. Korean J. Life Sci. 8: 387-394
  14. Macfaddin JF. 1990. Biochemical test for identification of Medical Bacteria. second edition. Williams & Wilkins, London, UK
  15. Michels, PC, Douglass C. 1997. Pressure-enhanced activity andstability of a hyperthermophilic protease from a deep-sea methanogen. Appl. Environ. Microbiol. 63: 3985-3991
  16. Watanabe K, Fujiwara H, Inui K, Suzuki Y. 2002. Oligo-1,6- glucosidase from thermophile, Bacillus thermoglucosidasius KP1006, was efficiently produced by combinatorial expression of GroEL in Escherichia coli. Biotechnol. Appl. Biochem. 35: 35-43 https://doi.org/10.1042/BA20010064
  17. Whelan W. 1965. Methods in Carbohydrate chemistry, IV, Academic press, New York, NY, USA, p. 252
  18. Wilson JJ, Ingledew WM. 1982. Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes. Appl. Environ. Microbiol. 44: 301-307
  19. Windish WW. 1965. Microbial amylasees. In: Advances in Applied Microbiology, 7: 273-299, Academic Press, New York, NY, USA