DOI QR코드

DOI QR Code

Synthesis of Magnetic Powder in the Sm-Fe-N System by the Reduction-Diffusion Process

환원-확산법에 의한 Sm-Fe-N계 자성분말 제조

  • Lee, Jung-Goo (Functional Materials Division, Korea Institute of Materials Science) ;
  • Kang, Seok-Won (Functional Materials Division, Korea Institute of Materials Science) ;
  • Park, Sang-Jun (Functional Materials Division, Korea Institute of Materials Science) ;
  • Oh, Yung-Woo (Division of Materials Science and Engineering Kyungnam University) ;
  • Choi, Chul-Jin (Functional Materials Division, Korea Institute of Materials Science)
  • 이정구 (한국기계연구원 부설 재료연구소 기능재료연구본부) ;
  • 강석원 (한국기계연구원 부설 재료연구소 기능재료연구본부) ;
  • 박상준 (한국기계연구원 부설 재료연구소 기능재료연구본부) ;
  • 오영우 (경남대학교 공과대학 신소재공학과) ;
  • 최철진 (한국기계연구원 부설 재료연구소 기능재료연구본부)
  • Received : 2010.05.14
  • Published : 2010.09.22

Abstract

In the present study, the reduction-diffusion method was employed to produce Sm-Fe alloy powder. It was confirmed that the amount of unreacted ${\alpha}-Fe$ in $Sm_2Fe_{17}$ matrix gradually decreased as the percentage of $Sm_2O_3$ increased. $Sm_2Fe_{17}$ single-phase powder was produced by the reduction-diffusion method with 40% excess $Sm_2O_3$. The Ca and Oxygen contents of the powder were approximately 300 ppm and 1600 ppm, respectively, after washing and acid treatment. By a subsequent nitrogenation, $Sm_2Fe_{17}N_x$ magnetic powders were produced. The coercivity of the powder increased with decreasing of the particle size by ball milling, and the highest coercivity of 2850 Oe was obtained after milling for 10 hours.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. Magnetic materials, A global strategic business report (2008).
  2. J. M. D. Coey and H. Sun, J. Magn. Mater. 87, L251 (1990). https://doi.org/10.1016/0304-8853(90)90756-G
  3. Y. Otani, D. P. F. Hurley, H. Sun, and J. M. D. Coey, J. Appl. Phys. 69, 5584 (1991). https://doi.org/10.1063/1.347957
  4. J. Ye, F. Li, Y. Liu, S. Gao, and M. Tu, J. Rare Earth 23, 53 (2005).
  5. J. J. Wyslocki, P. Pawlik, and W. Kaszuwara, J. Magn. Magn. Mater. 231, 272 (2001).
  6. K. M. Zuzek, P. J. Guiness, and G. Drazic, J. Alloys Compd. 345, 214 (2002). https://doi.org/10.1016/S0925-8388(02)00329-8
  7. K. Kobayashi and K. Ozaki, J. Jpn. Soc. Powder Metallurgy 51, 19 (2004). https://doi.org/10.2497/jjspm.51.19
  8. AIST Today No. 29, http://www.aist.go.jp (2008).
  9. N. Imaoka et al., J. Alloys Comp. 222, 73 (1995). https://doi.org/10.1016/0925-8388(94)04920-3
  10. H. Uchida et al., J. Alloys Comp. 222, 33 (1995). https://doi.org/10.1016/0925-8388(94)04908-4
  11. C. Cui, J. Sun, R. Wang, and Z. Liang, Superlattices and Microstructures 39, 406 (2006). https://doi.org/10.1016/j.spmi.2005.09.002
  12. R. E. Cech, JOM 26, 32 (1974). https://doi.org/10.1007/BF03355863
  13. T. Y. Liu, W. C. Chang, C. J. Chen, T. Y. Chu, and C. D. Wu, IEEE Trans. Magn. 28, 2593 (1992). https://doi.org/10.1109/20.179567
  14. A. Kawamoto et al., IEEE Trans. Magn. 35, 3322 (1999). https://doi.org/10.1109/20.800512
  15. J. C. Boareto et al., Mater. Sci. For. 534-536, 1365 (2007).
  16. S. Hirosawa and H. Tomizawa, The Magentics Society of Japan 21, 160 (1997).
  17. T. Ishikawa, The Japan Society Applied Electromagnetics and Mechanics 10, 287 (2002).
  18. T. B. Massalski, Binary Alloy Phase Diagrams, TMS, Materials Park, OH (1990).
  19. C. B. Song and T. R. Cho, Korean J. Mater. Res. 8, 720 (1998).
  20. H. Kwak, J. G. Lee, and C. J. Choi, J. Korean Powd. Met. Inst. 16, 336 (2009). https://doi.org/10.4150/KPMI.2009.16.5.336
  21. H. Uchida et al., J. Cera. Soc. Japan 114, 896 (2006). https://doi.org/10.2109/jcersj.114.896
  22. J. M. D. Coey, J. F. Lawler, H. Sun, and J. E. M. Allan, J. Appl. Phys. 69, 3007 (1991). https://doi.org/10.1063/1.348614
  23. J. Ye et al., J. Alloys Comp. 428, 350 (1995).
  24. D. C. Jiles, Acta Mater. 51, 5907 (2003). https://doi.org/10.1016/j.actamat.2003.08.011
  25. T. Ishikawa, A. Kawamoto, and K. Ohmori, J. Magn. Soc. Japan 24, 1394 (2000).