DOI QR코드

DOI QR Code

초음파 나노표면개질 공정기술에 의한 AISI304 스테인리스강의 표면나노구조화 및 압축잔류응력 형성

Formation of Nano-structure and Compressive Residual Stress on AISI304 Stainless Steel by Ultrasonic Nanocrystalline Surface Modification

  • 조인식 (선문대학교 하이브리드공학과) ;
  • 동계령 (창원대학교 나노.신소재공학부) ;
  • 유대황 (창원대학교 나노.신소재공학부) ;
  • 서정화 (창원대학교 나노.신소재공학부) ;
  • 아마노프 (선문대학교 기계공학과) ;
  • 신기삼 (창원대학교 나노.신소재공학부) ;
  • 이창순 (선문대학교 하이브리드공학과) ;
  • 편영식 (선문대학교 기계공학과) ;
  • 박인규 (선문대학교 하이브리드공학과)
  • 투고 : 2010.02.12
  • 발행 : 2010.09.22

초록

In this paper, the Ultrasonic Nanocrystalline Surface Modification (UNSM) surface treatment process was used to induce compressive residual stress and nanocrystalline structure by severe plastic deformation on the UNSM-treated surface. The test results for AISI304 stainless steel demonstrated that the grain size was found to be 23 nm, the dislocation density was increased by $0.2085{\times}10^{18}\;m^{-2}$, and the volume fraction of martensite is defined as 27.6% from austenite so that the surface hardness of the surface is increased from 200 Hv up to 515 Hv. The initial tensile residual stress is changed from 300 MPa to a compressive residual stress of 500 MPa after UNSM treatment. In addition, UNSM was applied under five various conditions, and the results of those conditions were defined as a function of depth quantitative.

키워드

과제정보

연구 과제 주관 기관 : 나노소재기술개발사업단

참고문헌

  1. Y. S. Pyoun, H. T. Kim, Y. C. Lee, A. Gafurov, H. Kim, and D. H. Jung, Int. J. of Automotive Tec. 9, 61 (2008). https://doi.org/10.1007/s12239-008-0008-7
  2. C. H. Suh, G. H. Song, and Y. S. Pyoun, Mat. Sci. Eng. A 443, 1016 (2007).
  3. R. B. Waterhouse, Friction Lubrication and Wear Technology, ASM Handbook 18, 241-254 (1992).
  4. I. Lee, J. Kor. Inst. Met. & Mater 46, 357 (2008).
  5. H. S. Lee, E. H. Kim, and J. H. Lee, J. Kor. Inst. Met. & Mater 46, 357 (2008).
  6. Young S. Pyoun, In S. Cho, Chang S. Lee, In G. Park, Doo S. Kim, Chang S. Kim, and In H. Cho, Proc. of Kor. Soc. Machine Tool Eng. 2007 Spring Conf. p.346 (2007).
  7. B. Scholtes, Assessment of residual stresses, (Ed. V. Hauk), p.590, Elsevier, Amsterdam (1997).
  8. B. S. Rho, H. U. Hong, and S. W. Nam, Int. J. of Fatigue 22, 683 (2000). https://doi.org/10.1016/S0142-1123(00)00043-8
  9. A. Y. Kina, V. M. Souza, S. S Tavares, J. M. Pardal, and J. A. Souza, Materials Characterization 59, 651 (2008). https://doi.org/10.1016/j.matchar.2007.04.004
  10. A. K. De, D. C. Murdock, M. C. Mataya, J. G. Speer, and D. K. Matlock, Scr. Mater 50, 1445 (2004). https://doi.org/10.1016/j.scriptamat.2004.03.011
  11. H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, and K. Lu, Acta Mater. 51, 1871 (2003). https://doi.org/10.1016/S1359-6454(02)00594-3