DOI QR코드

DOI QR Code

Effects of Gelatin Additives on the Microstructures and Corrosion Properties of Electrodeposited Cu Thin Films

젤라틴 첨가에 의한 구리 박막의 미세구조 변화 및 부식 특성

  • Kim, Minho (Department of Nano Fusion Technology, Pusan National University) ;
  • Cha, Hee-Ryoung (Department of Nano Fusion Technology, Pusan National University) ;
  • Choi, Changsoon (Department of Nanomaterials Engineering, Pusan National University) ;
  • Kim, Hae-sung (Department of Nano Fusion Technology, Pusan National University) ;
  • Lee, Dongyun (Department of Nano Fusion Technology, Pusan National University)
  • 김민호 (부산대학교 나노과학기술대학 나노융합기술학과) ;
  • 차희령 (부산대학교 나노과학기술대학 나노융합기술학과) ;
  • 최창순 (부산대학교 나노과학기술대학 나노소재공학과) ;
  • 김혜성 (부산대학교 나노과학기술대학 나노융합기술학과) ;
  • 이동윤 (부산대학교 나노과학기술대학 나노융합기술학과)
  • Received : 2010.04.02
  • Published : 2010.08.22

Abstract

We report on the effect of additives on the microstructure and corrosion properties of electrodeposited Cu films. Copper films were fabricated by electrodeposition on various concentrations of gelatin in a copper sulfate electrolyte. The surface morphologies of the Cu films were observed using a scanning electron microscope (SEM), and crystal orientation of the Cu films was analyzed by X-ray diffraction measurement. (220) plane was the dominant orientation when the films were fabricated at ambient temperature, decreasing in dominance with addition of gelatin. On the other hand, (111) plane-Cu films were preferentially grown at $40^{\circ}C$, and were also diminished with adding additives. Corrosion rate measurements using the Tafel extrapolation method based on corrosion potential and current reveal the effect of additives on corrosion behavior. Corrosion behavior was found to be strongly related to the orientation of the films. Consequently, additives like gelatin influence crystal orientation of the films, and if a less dense crystal plane, e.g. (220), is preferentially oriented during electrodeposition, a lower corrosion rate could be produced, since the plane shows a lower current density.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. N. Imaz, E. Garcia-Lecina, C. Suarez, J. A. Diez, J. Rodriguez, J. Molina, and V. Garcia-Navas, Trans. Inst. Metal Finish. 87, 64 (2009). https://doi.org/10.1179/174591909X424807
  2. Y. L. Kao, G. C. Tu, C. A. Huang, and J. H. Chang, Mater. Sci. Eng. A. 382, 104 (2004). https://doi.org/10.1016/j.msea.2004.04.028
  3. S. H. Kim, D. H. Shin, Y. S. Choi, J. G. Kim, and S. H. Kim, J. Kor. Inst. Met. & Mater. 43, 538 (2005).
  4. E. M. Sherif and S. M. Park, Corrosion Sci. 48, 4065 (2006). https://doi.org/10.1016/j.corsci.2006.03.011
  5. J. J. Shim, D. H. Shin, Y. S. Choi, J. G. Kim, and S. J. You, J. Kor. Inst. Met. & Mater. 41, 902 (2003).
  6. J. K. Chon and Y. Kim, J. Kor. Chem. Soc. 52, 434 (2008). https://doi.org/10.5012/jkcs.2008.52.4.434
  7. J. K. Chon and Y. Kim, J. Kor. Chem. Soc. 51, 305 (2007). https://doi.org/10.5012/jkcs.2007.51.4.305
  8. G. Kear, B. Barker, and F. Walsh, Corros. Sci. 46, 109 (2004). https://doi.org/10.1016/S0010-938X(02)00257-3
  9. M. Reid, J. Punch, C. Ryan, L. F. Garfias, S. Belochapkine, J. P. Franey, G. E. Derkits, Jr., and W. D. Reents, Jr. J. Electrochem. Soc. 154, C209 (2007). https://doi.org/10.1149/1.2436612
  10. S. Kuh, D. Woo, D. Lee, J. Kim, H. Ahn, and K. Moon, J. Kor. Soc. Water & Wastewater 20, 215 (2006).
  11. T. G. Woo, I. S. Park, E. K. Park, K. H. Jung, H. W. Lee, and K. W. Seol, J. Kor. Inst. Met. & Mater. 47, 586 (2009).
  12. T. M. Liakopoulos, W. Zhang, and C. H. Ahn, IEEE Trans. Magn. 32, 5154 (1996). https://doi.org/10.1109/20.539521
  13. H. J. Kang, P. N. Park, S. J. Park, and S. Y. Choi, Electro. Technol. Res. 203, 8 (2003).
  14. C. Hu and C. Wu, Surf. Coat. Tech. 176, 75 (2003). https://doi.org/10.1016/S0257-8972(03)00004-5
  15. V. Donepudi, R. Venkatachalapathy, P. Ozemoyah, C. Johnson, and J. Prakash, Electrochem. Solid-State. Lett. 4, C13 (2001). https://doi.org/10.1149/1.1342144
  16. C. M. Whelan, M. R. Smyth, and C. J. Barnes, J. Electroanal. Chem. 441, 109 (1998). https://doi.org/10.1016/S0022-0728(97)00415-4
  17. A. Kudelski, M. Janik-Czachor, J. Bukowska, M. Dolata, and A. Szummer, J. Mol. Struct. 483, 245 (1999). https://doi.org/10.1016/S0022-2860(98)00664-4
  18. A. Danilov, J. Andersen, E. Molodkina, Y. Polukarov, P. Moller, and J. Ulstrup, Electrochem. Acta 43, 733 (1977).
  19. N. Ikemiya, S. Miyaoko, and S. Hara, Surf. Sci. 327, 261 (1995). https://doi.org/10.1016/0039-6028(94)00844-2
  20. L. Bonou, M. Eyraud, R. Denoyel, and Y. Massiani, Electrochim. Acta 47, 4139 (2002). https://doi.org/10.1016/S0013-4686(02)00356-0
  21. K. D. Song, K. B. Kim, S. H. Han, and H. Lee, Electrochem. Solid-State. Lett. 7, C20, (2004). https://doi.org/10.1149/1.1635091
  22. T. Woo, M. Lee, E. Park, T. Bae, M. Lee, I. Park, K. Jung, and K Seol, J. Kor. Inst. Met. & Mater. 47, 256 (2009).
  23. S. Yoshimura, S. Yoshihara, T. Shirakashi, and E. Sato, Electrochim. Acta 39, 589 (1994). https://doi.org/10.1016/0013-4686(94)80105-3
  24. E. E. Sransbury and R. A. Buchanan, Fundamentals of Electrochemical Corrosion, ASM international ch.4 (2000).