DOI QR코드

DOI QR Code

Interaction Behavior between Lanthanide Element and Ferritic-Martensitic Steel

란탄족 원소와 Ferritic-Martensitic 강의 반응 거동

  • Kim, Jun Hwan (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute) ;
  • Baek, Jong Hyuk (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute) ;
  • Lee, Byoung Oon (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute) ;
  • Lee, Chan Bock (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute) ;
  • Yoon, Young Soo (Department of Materials Science and Engineering, Yonsei University)
  • 김준환 (한국원자력연구원 SFR 핵연료 피복관 개발) ;
  • 백종혁 (한국원자력연구원 SFR 핵연료 피복관 개발) ;
  • 이병운 (한국원자력연구원 SFR 핵연료 피복관 개발) ;
  • 이찬복 (한국원자력연구원 SFR 핵연료 피복관 개발) ;
  • 윤영수 (연세대학교 신소재공학과)
  • Received : 2010.03.02
  • Published : 2010.08.22

Abstract

A study has been carried out to evaluate the interaction behavior between a lanthanide element and clad material in order to analyze the effect of the lanthanide element on the fuel cladding chemical interaction (FCCI). A diffusion couple test between Misch metal (70Ce-30La) and ferritic-martensitic steel (Gr.92) was performed at $660^{\circ}C$, followed by a microstructural analysis of the coupled sample. The results showed that Ce in the Misch metal, rather than La, reacted with the ferritic-martensitic steel (FMS) to form an interaction layer that penetrated the clad thickness. Fe diffused outside the clad interface to form an $Fe_2Ce$ compound, leaving a depletion of Fe caused by excess diffusion as well as by the formation of Cr-rich precipitation inside the interaction layer. The rate of growth followed the cubic rate law, which indicated that Fe depletion was caused by the diffusion of Fe and that the associated Cr-rich phase formation controlled the whole diffusion process.

Keywords

Acknowledgement

Grant : 핵연료핵심기반기술 개발

Supported by : 교육과학기술부

References

  1. Y. I. Chang, Nucl. Eng. Tech. 39, 161 (2007). https://doi.org/10.5516/NET.2007.39.3.161
  2. J. H. Baek, S. H. Kim, C. B. Lee, and D. H. Hahn, Met. Mater. Int. 15, 565 (2009). https://doi.org/10.1007/s12540-009-0565-y
  3. G. L. Hofman and L. C. Walkers, Metallic fast fuels, in: R. W. Cahn, P. Haasen, E. J. Kramer (Eds.), Material Science and Technology - A Comprehensive Treatment, 10A Part I, VCH, Germany, p.28 (1994).
  4. D. D. Keiser, ANL-NT-240 (2006).
  5. S. A. Adams, et al., NUREG-1368, B-4 (1994).
  6. P. C. Tortorici and M. A. Dayananda, J. Nucl. Mater. 204, 165 (1993). https://doi.org/10.1016/0022-3115(93)90213-I
  7. D. D. Keiser, Script. Metall. et Mater. 33, 959 (1995). https://doi.org/10.1016/0956-716X(95)00318-P
  8. Y. G. Kim, C. H. Han, J. H. Baek, S. H. Kim, C. B. Lee, and S. I. Hong, Kor. J. Met. Mater. 48, 39 (2010). https://doi.org/10.3365.KJMM.2010.48.01.039
  9. S. G. Fishman and C. R. Crowe, Metallography 4, 572 (1971). https://doi.org/10.1016/0026-0800(71)90041-3
  10. K. Nakamura, T. Ogata, M. Kurata, A. Itoh, and M. Akabori, J. Nucl. Mater. 275, 246 (1999). https://doi.org/10.1016/S0022-3115(99)00227-5
  11. P. E. Palmer, H. R. Burkholder, B. J. Beaudry, and K. A. Gschneidner, J. of the Less-Comm. Metals 87, 135 (1982). https://doi.org/10.1016/0022-5088(82)90049-2
  12. T. B. Massalski, J. L. Murray, L. H. Bennet, H. Baker, and K. Kacprzak, Binary Alloy Phase Diagrams, 2nd Ed., ASM International, p.1059 (1986).