DOI QR코드

DOI QR Code

Tensile and Charpy Impact Properties of High-Strength Bainitic Steels Fabricated by Controlled Rolling Process

제어압연한 베이나이트계 고강도강의 인장 및 충격 성질

  • Sung, Hyo Kyung (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Shin, Sang Yong (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Hwang, Byoungchul (Ferrous Alloys Research Group, Korea Institute of Materials Science) ;
  • Lee, Chang Gil (Ferrous Alloys Research Group, Korea Institute of Materials Science) ;
  • Kim, Nack J. (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Lee, Sunghak (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
  • 성효경 (포항공과대학교 항공재료연구센터) ;
  • 신상용 (포항공과대학교 항공재료연구센터) ;
  • 황병철 (한국기계연구원 부설 재료연구소 철강재료연구그룹) ;
  • 이창길 (한국기계연구원 부설 재료연구소 철강재료연구그룹) ;
  • 김낙준 (포항공과대학교 철강대학원) ;
  • 이성학 (포항공과대학교 항공재료연구센터)
  • Received : 2010.03.17
  • Published : 2010.07.22

Abstract

This study is concerned with tensile and Charpy impact properties of high-strength bainitic steels fabricated by controlled rolling process. Six kinds of steels were fabricated by varying finish rolling temperature, start cooling temperature, and cooling rate, and their microstructures and tensile and Charpy impact properties were investigated. Their effective grain sizes were also characterized by the electron backscatter diffraction analysis. The microstructures of the steels rolled in the single phase region were most similar to those of the steels rolled in the two phase region. The steels cooled from $700{^{\circ}C}$ were composed mainly of granular bainites, while those cooled from $600{^{\circ}C}$ contained a number of bainitic ferrites, which resulted in the decrease in ductility and upper shelf energy in spite of the increase in strength. In the steels cooling from $600^{\circ}C$, fine acicular ferrites were well formed when the cooling rate was slow, which led to the best combination of high ductility, high upper shelf energy, and low energy transition temperature according to the decrease in the overall effective grain size due to the presence of acicular ferrites having smaller effective grain size.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. J. Y. Koo, M. J. Luton, N. V. Bangaru, R. A. Petkovic, D. P. Fairchild, C. W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi, Proc. of The Thirteenth Intern. Offshore and Polar Engineering Conf., p.10, Honolulu, Hawaii, USA (2003).
  2. B. L. Bramfitt and J. G. Speer, Metall. Trans. A 21, 817 (1990). https://doi.org/10.1007/BF02656565
  3. H. Ohtani, S. Okaguchi, Y. Fujishiro, and Y. Ohmori, Metall. Trans. A 21, 877 (1990). https://doi.org/10.1007/BF02656571
  4. T. Araki, Atlas for Bainitic Microstructures, p.1-100, ISIJ, Tokyo (1992).
  5. G. Krauss and S. W. Thompson, ISIJ Int. 35, 937 (1995). https://doi.org/10.2355/isijinternational.35.937
  6. H. K. D. H. Bhadeshia, Mater. Sci. Eng. A 378, 34 (2004). https://doi.org/10.1016/j.msea.2003.10.328
  7. C. Garcia-Mateo, M. Peet, F. G. Caballero, and H. K. D. H. Bhadeshia, Mater. Sci. Tech. 20, 814 (2004). https://doi.org/10.1179/026708304225017355
  8. C. H. Lee, H. K. D. H. Bhadeshia, and H.-C. Lee, Mater. Sci. Eng. A 360, 249 (2003). https://doi.org/10.1016/S0921-5093(03)00477-5
  9. S. Han, H. Seong, Y. Ahn, C. I. Garcia, A. J. DeArdo, and I. Kim, Met. Mater. Int. 15, 521 (2009). https://doi.org/10.1007/s12540-009-0521-x
  10. R. Denys, Pipeline Technology Conference, Vol. 1 & II, Elsevier, Amsterdam, Netherlands (2000).
  11. US Patent Pub. No. 20070193666 (2007).
  12. U. G. Gang, J. C. Lee, and W. J. Nam, Met. Mater. Int. 15, 719 (2009). https://doi.org/10.1007/s12540-009-0719-3
  13. T. Hara, Y. Shinohara, Y. Terada, H. Asahi, and N. Doi, Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, p.73, Vancouver, Canada (2009).
  14. D. B. Lillig, Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, p.1, Vancouver, Canada (2008).
  15. F. B. Pickering, Steels, Metallurgical Principles. In: Encyclopedia of Materials Science and Engineering, Vol. 6, The MIT Press, Cambridge (1986).
  16. K. W. Andrews, Journal of the Iron and Steel Institute 203, 721 (1965).
  17. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi, Thermomechanical Processing of High-strength Low-alloy Steels, Butterworth & Co., Ltd. (1988).
  18. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez, Metall. Mater. Trans. A. 34, 2505 (2003). https://doi.org/10.1007/s11661-003-0010-7
  19. ASTM Standard E8m-09, Standard Test Methods for Tension Testing of Metallic Materials, ASTM, West Conshohocken, PA, USA (2009).
  20. ASTM Standard E23-09, Standard Test Method for Notched Bar Impact Testing of Metallic Materials, ASTM, West Conshohocken, PA, USA (2009).
  21. W. Oldfield, Curve fitting impact test data - a statistical procedure, ASTM Standardization News, p.24, West Conshohocken, PA, USA (1975).
  22. H. W. Swift, J. Mech. Phys, Solids 1, 1 (1952). https://doi.org/10.1016/0022-5096(52)90002-1
  23. J. H. Hollomon, Trans. AIME 162, 268 (1945).
  24. B.-W. Choi, D.-H. Seo, and J.-I. Jang, Met. Mater. Int. 15, 373 (2009). https://doi.org/10.1007/s12540-009-0373-4
  25. S. K. Kim, Y. M. Kim, Y. J. Lim, and N. J. Kim, Proc. of 15th Conf. on Mechanical Behaviors of Materials, p.177, Seoul, Korea (2001).
  26. N. J. Kim, Mater. Sci. Eng. A 129, 35 (1990). https://doi.org/10.1016/0921-5093(90)90342-Z
  27. K.-H. Lee, S.-G. Park, M.-C. Kim, B.-S. Lee, and D.-M. Wee, J. Kor. Inst. Met. & Mater. 47, 533 (2009).
  28. Y. Ohomori, H. Ohtani, and T. Kunitake, Met. Sci. 8, 357 (1974). https://doi.org/10.1016/0036-9748(74)90138-0
  29. M. C. Zhao, K. Yang, and Y. Shan, Mater. Sci. Eng. A 335, 14 (2002). https://doi.org/10.1016/S0921-5093(01)01904-9
  30. D. V. Edmons and R. C. Cochrorane, Metall. Trans. A 21, 1527 (1990). https://doi.org/10.1007/BF02672567
  31. F. B. Pickering and T. Gladman, ISI Spec. Rep., p.81 (1961).