DOI QR코드

DOI QR Code

나노 크기의 실버 및 글래스 분말로부터 형성된 실버 전극의 특성

Characteristics of Silver Electrode Formed from Nano-Sized Silver and Glass Powders

  • Koo, Hye Young (Department of Chemical Engineering, Konkuk University) ;
  • Kim, Jung Hyun (Department of Chemical Engineering, Konkuk University) ;
  • Yi, Jang Heui (Department of Chemical Engineering, Konkuk University) ;
  • Ko, You Na (Department of Chemical Engineering, Konkuk University) ;
  • Kang, Yun Chan (Department of Chemical Engineering, Konkuk University)
  • 투고 : 2010.01.06
  • 발행 : 2010.06.22

초록

Silver conducting films were formed from nano-sized silver powders and glass frits prepared by flame spray pyrolysis. The mean sizes of the silver powders and glass frits were 73 and 63 nm, respectively. Nano-sized glass frits improved the adhesion strength of the silver conducting film to the glass substrate. The densities of the silver conducting films increased by increasing the glass contents of the films at firing temperatures of 400 and $500{^{\circ}C}$. The specific resistances of the silver conducting films with 5 wt.% glass of silver component were 7.8, 4.2 and 2.4 cm at firing temperatures of 400, 450 and $500{^{\circ}C}$.

키워드

과제정보

연구 과제 주관 기관 : 지식경제부

참고문헌

  1. K. J. Park, D. S. Seo, and J. K. Lee, Colloid Surf. A 313-314, 351 (2008). https://doi.org/10.1016/j.colsurfa.2007.04.147
  2. S. H. Park, D. S. Seo, and J. K. Lee, Colloid Surf. A 313-314, 197 (2008). https://doi.org/10.1016/j.colsurfa.2007.04.092
  3. S. A. Ketkar, G. G. Umarji, G. J. Phatak, T. Seth, U. P. Mulik, and D. P. Amalnerkar, Mater. Sci. Eng. B 132, 197 (2006). https://doi.org/10.1016/j.mseb.2006.02.022
  4. L. Shiyong, W. Ning, X. Wencai, and L. Yong, Mater. Chem. Phys. 111, 20 (2008). https://doi.org/10.1016/j.matchemphys.2007.11.042
  5. R. W. Vest, Ceram. Bull. 65, 631 (1986).
  6. S. B. Rane, T. Seth, G. J. Phatak, D. P. Amalnerkar, and B. K. Das, Mater. Lett. 57, 3096 (2000).
  7. H. G. Han, D. S. Seo, and J. K. Lee, J. Kor. Inst. Met. & Mater. 46, 516 (2008).
  8. W. Li, S. Seal, E. Megan, J. Ramsdell, K. Scammon, G. Lelong, L. Lachal, and K. A. Richardson, J. Appl. Phys. 93, 9553 (2003). https://doi.org/10.1063/1.1571215
  9. P. K. Khanna, N. Singh, D. Kulkarni, S. Deshmukh, S. Charan, and P. V. Adhyapak, Mater. Lett. 61, 3366 (2007). https://doi.org/10.1016/j.matlet.2006.11.064
  10. W. Zhang, X. Qiao, and J. Chen, Mater. Sci. Eng. B 142, 1 (2007). https://doi.org/10.1016/j.mseb.2007.06.014
  11. H. Keskinen, J. M. Mäkelä, M. Vippola, M. Nurminen, J. Liimatainen, T. Lepisto, and J. Keskinen, J. Mater. Res. 19, 1544 (2004). https://doi.org/10.1557/JMR.2004.0207
  12. J. M. Makela, H. Keskinen, T. Forsblom, and J. Keskinen, J. Mater. Sci. 39, 2783 (2004). https://doi.org/10.1023/B:JMSC.0000021454.15740.e6
  13. A. I. Korchagin, Vacuum 77, 485 (2005). https://doi.org/10.1016/j.vacuum.2004.09.015
  14. D. H. Jang, D. J. Kim, B. Y. Lee, S. S. Kim, M. S. Kang, D. K. Min, and J. H. Moon, Adv. Func. Mater. 18, 2862 (2008). https://doi.org/10.1002/adfm.200800238
  15. K. H. Lee, B. J. Jeon, C. H. Kim, Y. G. Kwon, M. J. Park, H. H. Gu, J. W. Uhm, Y. T. Kim, and K. H. Hur, J. Kor. Ceram. Soc. 46, 175 (2009). https://doi.org/10.4191/KCERS.2009.46.2.175
  16. H. Y. Koo, J. H. Yi, J. H. Kim, Y. N. Ko, D. S. Jung, and Y. C. Kang, J. Ceram. Soc. Jpn. 118, 25 (2010). https://doi.org/10.2109/jcersj2.118.25