DOI QR코드

DOI QR Code

Electrical and Mechanical Properties of Cu/Carbon Nano-Particle Hybrids Composites by Cathodic Electrophoresis

음극 전기영동법에 의해 제조된 구리/탄소 나노입자 하이브리드 복합재료의 전기적/기계적 특성 평가

  • Lee, Wonoh (Composite Materials Research Group, Korea Institute of Materials Science) ;
  • Lee, Sang-Bok (Composite Materials Research Group, Korea Institute of Materials Science) ;
  • Choi, Oyoung (Composite Materials Research Group, Korea Institute of Materials Science) ;
  • Yi, Jin-Woo (Composite Materials Research Group, Korea Institute of Materials Science) ;
  • Byun, Joon-Hyung (Composite Materials Research Group, Korea Institute of Materials Science)
  • 이원오 (한국기계연구원 부설 재료연구소, 복합재료연구그룹) ;
  • 이상복 (한국기계연구원 부설 재료연구소, 복합재료연구그룹) ;
  • 최오영 (한국기계연구원 부설 재료연구소, 복합재료연구그룹) ;
  • 이진우 (한국기계연구원 부설 재료연구소, 복합재료연구그룹) ;
  • 변준형 (한국기계연구원 부설 재료연구소, 복합재료연구그룹)
  • Received : 2010.06.09
  • Published : 2010.12.25

Abstract

Cu/carbon nano-particle hybrids were fabricated through the cathodic electrophoretic deposition (EPD) process. CNT and CNF nano-particles were modified to give positive charges by polyethyleneimine (PEI) treatment before depositing them on the substrate. Since a Cu plate was used as an anode in the EPD process, Cu particles were also deposited along with the carbon nano-particles. Experimental observation showed the nano-hybrids constructed a novel formicary-like nano-structure which is strong and highly conductive. Utilizing the hybrids, carbon fiber composites were manufactured, and their electrical conductivity and interlaminar shear strength were measured. In addition, the deposition morphology and failure surface were examined by SEM observations. Results demonstrated that the electrical conductivities in the through-the-thickness direction and the interlaminar shear strength significantly increased by 350~2100% and 14%, respectively.

Keywords

Acknowledgement

Grant : 구조용 다기능성 마이크로/나노 복합재료 개발

Supported by : 교육과학기술부, 재료연구소

References

  1. E. T. Thostenson, Z. Ren, and T.-W. Chou, Compos. Sci. Technol. 61, 1899 (2001). https://doi.org/10.1016/S0266-3538(01)00094-X
  2. J. Lia and R. Luo, Compos. Pt. A-Appl. Sci. Manuf. 39, 1700 (2008). https://doi.org/10.1016/j.compositesa.2008.07.009
  3. E. Bekyarova, E. T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H. T. Hahn, T.-W. Chou, M. E. Itkis, and R. C. Haddon, Langmuir 23, 3970 (2007). https://doi.org/10.1021/la062743p
  4. J. Zhu, A. Imam, R. Crane, K. Lozano, V. N. Khabashesku, and E. V. Barrera, Compos. Sci. Technol. 67, 1509 (2007). https://doi.org/10.1016/j.compscitech.2006.07.018
  5. J. Qiu, C. Zhang, B. Wang, and R Liang, Nanotechnology 18, 275708 (2007). https://doi.org/10.1088/0957-4484/18/27/275708
  6. R. Sadeghian, S. Gangireddy, B. Minaie, and K.-T. Hsiao, Compos. Pt. A-Appl. Sci. Manuf. 37, 1787 (2006). https://doi.org/10.1016/j.compositesa.2005.09.010
  7. Y.-H. Zang, S. Kim, Y.-C. Jung, and S.-K. Lee, J. Kor. Met. & Mater. 42, 425 (2004).
  8. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer 40, 5967 (1999). https://doi.org/10.1016/S0032-3861(99)00166-4
  9. B. H. Cipriano, A. K. Kota, A. L. Gershon, C. J. Laskowski, T. Kashiwagi, H. A. Bruck, and S. R. Raghavan, Polymer 49, 4846 (2008). https://doi.org/10.1016/j.polymer.2008.08.057
  10. K.-T. Lau and D. Hui, Carbon 40, 1605 (2002). https://doi.org/10.1016/S0008-6223(02)00157-4
  11. M. Nadler, J. Werner, T. Mahrholz, U. Reidel, and W. Hufenbach, Compos. Pt. A-Appl. Sci. Manuf. 40, 932 (2009). https://doi.org/10.1016/j.compositesa.2009.04.021
  12. S. I. Cha, K. T. Kim, S. N. Arshad, C. B. Mo, and S. H. Hong, Adv. Mater. 17, 1377 (2005). https://doi.org/10.1002/adma.200401933
  13. S.-H. Kwon, D.-Y. Park, D.-Y. Lee, K.-J. Euh, and K-A. Lee, J. Kor. Met. & Mater. 46, 182 (2008).
  14. K. T. Kim, J. Eckert, S. B. Menzel, T. Gemming, and S. H. Hong, Appl. Phys. Lett. 92, 121901 (2008). https://doi.org/10.1063/1.2899939
  15. A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. J. Minay, and M. S. P. Sjaffer, Carbon 44, 3149 (2006). https://doi.org/10.1016/j.carbon.2006.06.021
  16. J. K. Park, I. H. Do, P. Askeland, and L. T. Drzal, Compos. Sci. Technol. 68, 1734 (2008). https://doi.org/10.1016/j.compscitech.2008.02.002
  17. J. P. Hirth, Metall. Trans. A 9, 401 (1978). https://doi.org/10.1007/BF02646391
  18. H. Liu, F. Favier, K. Ng, M. P. Zach, and R. M. Penner, Electrochem. Acta 47, 671 (2001). https://doi.org/10.1016/S0013-4686(01)00747-2
  19. S. B. Lee, K. Matsunaga, Y. Ikuhara, and S.-K. Lee, Mat. Sci. Eng. A 449-451, 778 (2007). https://doi.org/10.1016/j.msea.2006.02.377
  20. S. M. Kang, J. Rho, I. S. Choi, P. B. Messersmith, H. Lee, J. Am. Chem. Soc. 131, 13224 (2009). https://doi.org/10.1021/ja905183k
  21. O. Choi, W. Lee, J.-W. Yi, H.-K. Lee, J.-B. Kim, B.-S. Kim, and J.-H. Byun, Proc. Kor. Soc. Comp. Mater. Conf. (ed. W.I. Lee), p.279, Korean Society for Composite Materials, Jeonju, Korea (2010).
  22. W. Lee, S.-B. Lee, O. Choi, J.-W. Yi, M.-K. Um, J.-H. Byun, E. T. Thostenson, and T.-W. Chou, J. Mater. Sci. doi:10.1007/s10853-010-5082-3.