DOI QR코드

DOI QR Code

팔라듐 표면처리를 통한 Massive Spalling 현상의 억제

Retardation of Massive Spalling by Palladium Layer Addition to Surface Finish

  • 이대현 (고려대학교 신소재공학부) ;
  • 정보묵 (고려대학교 신소재공학부) ;
  • 허주열 (고려대학교 신소재공학부)
  • Lee, Dae-Hyun (Department of Materials Science and Engineering, Korea University) ;
  • Chung, Bo-Mook (Department of Materials Science and Engineering, Korea University) ;
  • Huh, Joo-Youl (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2010.06.29
  • 발행 : 2010.11.25

초록

The reactions between a Sn-3.0Ag-0.5Cu solder alloy and electroless Ni/electroless Pd/immersion Au (ENEPIG) surface finishes with various Pd layer thicknesses (0, 0.05, 0.1, 0.2, $0.4{\mu}m$) were examined for the effect of the Pd layer on the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow at $235^{\circ}C$. The thin layer deposition of an electroless Pd (EP) between the electroless Ni ($7{\mu}m$) and immersion Au ($0.06{\mu}m$) plating on the Cu substrate significantly retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow. Its retarding effect increased with an increasing EP layer thickness. When the EP layer was thin (${\leq}0.1{\mu}m$), the retardation of the massive spalling was attributed to a reduced growth rate of the $(Cu,Ni)_6Sn_5$ layer and thus to a lowered consumption rate of Cu in the bulk solder during reflow. However, when the EP layer was thick (${\geq}0.2{\mu}m$), the initially dissolved Pd atoms in the molten solder resettled as $(Pd,Ni)Sn_4$ precipitates near the solder/$(Cu,Ni)_6Sn_5$ interface with an increasing reflow time. Since the Pd resettlement requires a continuous Ni supply across the $(Cu,Ni)_6Sn_5$ layer from the Ni(P) substrate, it suppressed the formation of $(Ni,Cu)_3Sn_4$ at the $(Cu,Ni)_6Sn_5/Ni(P)$ interface and retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer.

키워드

참고문헌

  1. K. Zeng and K. N. Tu, Mater. Sci. Eng. R38, 55 (2002).
  2. H. Roberts and K. Johal, Lead-Free Soldering (ed. J. Bath), p.221-269, Springer, New York (2007).
  3. J. Y. Sung, S. E. Pyo, J. Y. Koo, J. W. Yoon, Y. E. Shin, and S. B. Jung, J. Kor. Ins. Met. & Mater. 47, 261 (2009).
  4. Y. Oda, M. Kiso, and S. Hashimoto, Proc. ICP Printed Circuit Expo, Anaheim, CA (2006).
  5. C. H. Fu, L. Y. Hung, D. S. Jiang, Y. P. Wang, and C. S. Hsiao, Proc. Microsystems Packaging Assembly and Circuits Technology Conference, p.331, Taipei, Taiwan (2007).
  6. Y. D. Jeon, Y. B. Lee, and Y. S. Choi, Proc. 56th Electronic Components and Technology Conference, p.119, San Diego, CA (2006).
  7. C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, and D. S. Jiang Yang, J. Electron. Mater. 35, 1017 (2006). https://doi.org/10.1007/BF02692562
  8. C. E. Ho, S. C. Yang, and C. R. Kao, J. Mater. Sci.: Mater. Electron. 18, 155 (2007). https://doi.org/10.1007/s10856-006-0675-8
  9. F. Zhang, M. Li, B. Balakrisnan, and W. T. Chen, J. Electron. Mater. 31, 1256 (2002). https://doi.org/10.1007/s11664-002-0018-6
  10. JEDEC Standard JESD22-B111 (2003).
  11. L. C. Shiau, C. E. Ho, and C. R. Kao, Solder. Surf. Mount Tech. 14/3, 25 (2002).
  12. K. K. Hong, J. B. Ryu, C. Y. Park, and J. Y. Huh, J. Electron. Mater. 37, 61 (2008). https://doi.org/10.1007/s11664-007-0283-5
  13. C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, J. Electron. Mater. 29, 1175 (2000). https://doi.org/10.1007/s11664-000-0010-y
  14. A. M. Minor and J. W. Morris, Jr., Metall. Mater. Trans. 31A, 798 (2000).