DOI QR코드

DOI QR Code

Effects of Pulse-Reverse Current on Purity of Deposit in Electrowinning of Cobalt

코발트 전해채취 시 전착물 순도에 미치는 Pulse-Reverse Current의 영향

  • Han, Jung Min (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Jung Hoon (Department of Materials Science and Engineering, Pusan National University) ;
  • Kim, Yong Hwan (Department of Materials Science and Engineering, Pusan National University) ;
  • Jung, Uoo Chang (Dongnam Technology Service Division, Korea Institute of Industrial Technology) ;
  • Chung, Won Sub (Department of Materials Science and Engineering, Pusan National University)
  • Received : 2010.09.26
  • Published : 2010.11.25

Abstract

In order to improve the purity on deposit in cobalt electrowining, a fundamental study using Pulse-Reverse Current (PRC) was carried out. Based on a sulfate solution, Cu, Ni, and Fe as impurities were added during cobalt electrowinning. There were four reverse waveforms and frequency conditions from 1 Hz to 10 kHz, and the purity of each condition was compared with the Direct Current (DC) purity. From the results, it was found that the anodic potential induced by reverse current affects selective dissolution of impurities. In this work, the case of the highest reverse peak current density ($I_r$) with a short reverse time ($t_r$) at 100 Hz showed a higher purity than that of the DC. This PRC condition also showed only a 4% low current efficiency comparable to the DC. We concluded that an optimized PRC for cobalt electrowinning could improve the purity with little loss of current efficiency.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. K. Mimura, M. Uchikoshi, T. Kekesi, and M. Isshiki, Mater. Sci. Eng. A 334, 127 (2002). https://doi.org/10.1016/S0921-5093(01)01797-X
  2. M. Uchikoshi, H. Shibuya, J. Imaizumi, T. Kekesi, K. Mimura, and M. Isshiki, Metall. Mater. Trans. B 41B, 448 (2010).
  3. Y. R. Yoo, S. G. Jang, H. S. Nam, G. T. Shim, H. H. Cho, J. G. Kim, and Y. S. Kim, Met. Mater. Int. 14, 729 (2008). https://doi.org/10.3365/met.mat.2008.12.729
  4. K. H. Park and J. S. Son, The Core Material of Cobalt in High-Tech Industry, p. 47, Korea Metal Journal, Korea (2006).
  5. K. H. Park, S. H. Jung, C. W. Nam, S. M. Sin, and D. S. Kim, J. Kor. Inst. Met. Mater. 42, 947 (2004).
  6. I. G. Sharma, P. Alex, A. C. Bidaye, and A. K. Suri, Hydrometallurgy 80, 132 (2005). https://doi.org/10.1016/j.hydromet.2005.08.003
  7. S. C. Das and T. Subbaiah, Hydrometallurgy 12, 317 (1984). https://doi.org/10.1016/0304-386X(84)90004-5
  8. S. Nakahara and S. Mahajan, J. Electrochem. Soc. 127, 283 (1980). https://doi.org/10.1149/1.2129656
  9. G. R. Lakshminarayanan, E. S. Chen, J. C. Sadak, and F. K. Sautter, J. Electrochem. Soc. 123, 1612 (1976). https://doi.org/10.1149/1.2132656
  10. K. G. Mishra, P. Singh, G. Hefter, and D. Muir, Metall. Mater. Trans. B 33B, 137 (2002).
  11. C. Kargl-Simard, J. H. Huang, and A. M. Alfantazi, Miner. Eng. 16, 529 (2003). https://doi.org/10.1016/S0892-6875(03)00059-1
  12. S. C. Das and T. Subbaiah, J. Appl. Electrochem. 17, 675 (1987). https://doi.org/10.1007/BF01007801
  13. B. C. Tripathy, P. Singh, and D. M. Muir, Metall. Mater. Trans. B 32B, 395 (2001).
  14. K. G. Mishra, P. Singh, and D. M. Muir, Hydrometallugy 65, 97 (2002). https://doi.org/10.1016/S0304-386X(02)00036-1
  15. A. E. Elsherief, J. Appl. Electrochem. 33, 43 (2003). https://doi.org/10.1023/A:1022938824111
  16. K. Kongolo, C. T. Mutale, and M. K. Kalenga, J. South Af. Inst. Miner. and Metall. 105, 599 (2005).
  17. N. Pradhan, P. Singh, B. C. Tripathy, and S. C. Das, Miner. Eng. 14, 775 (2001). https://doi.org/10.1016/S0892-6875(01)00072-3
  18. M. I. Jeffrey, W. L. Choo, and P. L. Breuer, Miner. Eng. 13, 1231 (2000). https://doi.org/10.1016/S0892-6875(00)00107-2
  19. Ruth E. Churchward, F. K. Shelton, and R. G. Knickerbocker, Trans. Electrochem. Soc. 85, 193 (1944). https://doi.org/10.1149/1.3071593