DOI QR코드

DOI QR Code

Effect of an Aging Treatment on the Interfacial Reaction and Mechanical Properties of an AS52+Sr/Al18B4O33 Magnesium Matrix Composite

AS52+Sr/Al18B4O33 복합재료 계면반응 및 기계적 특성에 미치는 시효 열처리의 영향

  • Park, YongHa (School of Materials Science and Engineering, Pusan National University) ;
  • Park, YongHo (School of Materials Science and Engineering, Pusan National University) ;
  • Park, IkMin (School of Materials Science and Engineering, Pusan National University) ;
  • Cho, KyungMox (School of Materials Science and Engineering, Pusan National University)
  • Received : 2010.03.16
  • Published : 2010.10.22

Abstract

The aging behavior of aluminum borate whisker ($Al_{18}B_4O_{33}$) reinforced AS52+Sr magnesium matrix composites was investigated with Vickers hardness measurements, bending tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Experimental results showed that aging is accelerated in the $AS52+Sr/Al_{18}B_4O_{33}$ composite compared with an unreinforced AS52+Sr alloy. The hardness of the alloy and composite increases monotonically as a function of the aging time before reaching its peak hardness and then gradually decreases. The composite reaches its peak hardness in 10 h, whereas the matrix alloy requires 30h, indicating accelerated age-hardening in the $AS52+Sr/Al_{18}B_4O_{33}$ composite compared with the unreinforced AS52+Sr alloy at $170^{\circ}C$. The interfacial reaction of $AS52+Sr/Al_{18}B_4O_{33}$ magnesium matrix composite is considered to play a dominant role in the strengthening mechanism, ultimately affecting the mechanical properties of the composite.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Hai Zhi Ye and Xing Yang Liu, Mater. Sci. 39, 6153 (2004). https://doi.org/10.1023/B:JMSC.0000043583.47148.31
  2. Boq-Kong Hwu, Su-Jien Lin, and Min-Ten Jahn, Mater. Sci. Eng. A 207, 135 (1996). https://doi.org/10.1016/0921-5093(95)10026-1
  3. S. M. Seyed Reihani, Materials and Design 27, 216 (2006). https://doi.org/10.1016/j.matdes.2004.10.016
  4. Harun Mindivan, E. Sabri Kayali, and Huseyin Cimenoglu, Wear 265, 645 (2008). https://doi.org/10.1016/j.wear.2007.12.007
  5. M. Zheng, K. Wu, and C. Yao, Mater. Lett. 47, 118 (2001). https://doi.org/10.1016/S0167-577X(00)00221-4
  6. M. Y. Zheng, K. Wu, S. Kamado, and Y. Kojima, Mater. Sci. Eng. A 348, 67 (2003). https://doi.org/10.1016/S0921-5093(02)00638-X
  7. M. Zheng, K. Wu, C. Yao, T. Sato, H. Tezuka, A. Kamio, and D. X. Li, Mater. Lett. 41, 57 (1999). https://doi.org/10.1016/S0167-577X(99)00103-2
  8. W. G. Wang, K. Matsugi, O. Yanagisawa, and G. Sasaki, Mater. Trans. 48, 1948 (2007). https://doi.org/10.2320/matertrans.MER2007032
  9. Zhang Xiuqing, Liao Lihua, Ma Naiheng, and Wang Haowei, Materials Chemistry and Physics 96, 9 (2006). https://doi.org/10.1016/j.matchemphys.2005.06.027
  10. G. Sasaki, W. G. Wang, Y. Hasegawa, Y. B. Choi, N. Fuyama, K. Matsugi, and O. Yanagisawa, J. Mater. Proces. Tech. 187, 429 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.076
  11. D. Y. Ding, D. Z. Wang, W. L. Zhang, C. K. Yao, J. C. Rao, and D. X. Li, Mater. Lett. 45, 6 (2000). https://doi.org/10.1016/S0167-577X(00)00063-X
  12. D. H. Song, C. W. Lee, K. Y. Nam, S. W. Lee, Y. H. Park, K. M. Cho, and I. M. Park, Materials Science Forum 539, 1784 (2007).
  13. M. Zheng, K. Wu, H. Liang, S. Kamado, and Y. Kojama, Mater. Lett. 57, 558 (2002). https://doi.org/10.1016/S0167-577X(02)00829-7
  14. L. J. Yao, G. Sasaki, and K. Fukunaga, Mater. Sci. Eng. A 225, 59 (1997). https://doi.org/10.1016/S0921-5093(96)10871-6
  15. W. M. Zhong, G. L'esperance and M. Suery, Metal. and Mater. Tran. A 26A, 2625 (2005).
  16. A. D. McLeod and C. M. Gabryel, Metal. Trans. A 23A, 1279 (1992).
  17. J. Pan, A. Okamoto, S. P. Lee, G. Sasaki, M. Yoshida, and H. Fukunaga, J. Japan Inst. Metals 65, 199 (2001). https://doi.org/10.2320/jinstmet1952.65.3_199
  18. G. BI, H. W. Wang, and R. J. Wu, J. Mater. Sci. Let. 20, 937 (2001). https://doi.org/10.1023/A:1010941202953