DOI QR코드

DOI QR Code

Microstructural and Mechanical Property Evaluation of the Ferritic-Martensitic Steel under Liquid Sodium Environment

액체소듐 환경에서 Ferritic-Martensitic강의 미세조직 및 기계적 성질 평가

  • Kim, Jun Hwan (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute) ;
  • Kim, Jong Man (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute) ;
  • Kim, Sung Ho (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute) ;
  • Lee, Chan Bock (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute)
  • 김준환 (한국원자력연구원 SFR 핵연료 피복관 개발) ;
  • 김종만 (한국원자력연구원 SFR 핵연료 피복관 개발) ;
  • 김성호 (한국원자력연구원 SFR 핵연료 피복관 개발) ;
  • 이찬복 (한국원자력연구원 SFR 핵연료 피복관 개발)
  • Received : 2010.06.18
  • Published : 2010.10.22

Abstract

Studies were carried out to assess the microstructural and mechanical properties of ferriticmartensitic steel under a flowing sodium environment. HT9 (12Cr-MoVW) and Gr.92 (9Cr-MoVNbW) steel were exposed to liquid sodium at $650^{\circ}C$ containing dissolved oxygen of 20 ppm for 2333 hours and evaluations of the microstructure as well as the mechanical properties of the microhardness and nanoindentation were carried out. The result showed that both HT9 and Gr.92 exhibited macroscopic weight loss caused by general corrosion as well as localized types such as intergranular corrosion and pitting. Decarburization at the steel surface took place as the test proceeded. As the Cr content increased, dissolution and decarburization were suppressed. Assessment of the actual cladding geometry revealed that an aging process rather than decarburization governed the mechanical properties, which resulted in a decrease of the microhardness and yield stress.

Keywords

Acknowledgement

Grant : 핵연료 핵심기반기술 개발

Supported by : 교육과학기술부

References

  1. Y. I. Chang, Nucl. Eng. Tech. 39, 161 (2007). https://doi.org/10.5516/NET.2007.39.3.161
  2. K. Natesan, Metall. Trans. 6A, 1143 (1975).
  3. K. Natesan, M. Li, O. K. Chopra, and S. Majumdar, J. Nucl. Mater. 392, 243 (2009). https://doi.org/10.1016/j.jnucmat.2009.03.039
  4. J. H. Kim, J. M. Kim, J. E. Cha, S. H. Kim, and C. B. Lee, Kor. J. Met. Mater. 48, 410 (2010) https://doi.org/10.3365/KJMM.2010.48.05.410
  5. D. L. Smith and R. H. Lee, ANL-7891 (1972).
  6. T. Suzuki and I. Mutoh, J. Nucl. Mater. 149, 41 (1987). https://doi.org/10.1016/0022-3115(87)90496-X
  7. H. U. Borgstedt, J. Nucl. Mater. 317, 160 (2003). https://doi.org/10.1016/S0022-3115(03)00073-4
  8. R. Baboian, Corrosion Tests and Standards: Application and interpretation, ASTM Manual Series MNL 20, 387 (1995).
  9. W. F. Brehm, HEDL-SA-1559 (1978).
  10. K. Natesan, O. K. Chopra, and T. F. Kassner, Nucl. Tech. 28, 441 (1976).
  11. A. Saltelli, O. K. Chopra, and K. Natesan, J. Nucl. Mater. 110, 1 (1982). https://doi.org/10.1016/0022-3115(82)90401-9
  12. P. L. F. Rademakers and B. H. Kolster, J. Nucl. Mater. 97, 309 (1981). https://doi.org/10.1016/0022-3115(81)90479-7
  13. R. L. Klueh and D. R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, p. 33, American Society for Testing and Materials (2001).
  14. J. H. Baek, S. H. Kim, C. B. Lee, and D. H. Hahn, Met. Mater. Int. 15, 565 (2009). https://doi.org/10.1007/s12540-009-0565-y