DOI QR코드

DOI QR Code

복합산화물이 형성된 API X80 라인파이프강의 용접열영향부 샤르피 흡수에너지

Charpy Impact Properties of Heat Affected Zones of API X80 Linepipe Steels Containing Complex Oxides

  • 성효경 (포항공과대학교 항공재료연구센터) ;
  • 신상용 (포항공과대학교 항공재료연구센터) ;
  • 차우열 (POSCO 기술연구소 제강연구그룹) ;
  • 오경식 (POSCO 기술연구소 제강연구그룹) ;
  • 이성학 (포항공과대학교 항공재료연구센터) ;
  • 김낙준 (포항공과대학교 철강대학원)
  • Sung, Hyo Kyung (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Shin, Sang Yong (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Cha, Wooyeol (Steelmaking Research Group, Technical Research Laboratories, POSCO) ;
  • Oh, Kyungshik (Steelmaking Research Group, Technical Research Laboratories, POSCO) ;
  • Lee, Sunghak (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Kim, Nack J. (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology)
  • 투고 : 2010.03.17
  • 발행 : 2010.10.22

초록

This study assessed the Charpy impact properties of the heat-affected zones (HAZs) of API X80 linepipe steels containing complex oxides. Three types of steel were fabricated by adding Mg and $O_2$ to form complex oxides and their microstructures and Charpy impact properties were investigated. The number of complex oxides increased with the amount of excess Mg and $O_2$ that was included in the steels. Simulated HAZs containing a number of oxides showed a high volume fraction of acicular ferrite (AF) because the oxides acted as nucleation sites for AF, thereby leading to an improvement in the Charpy impact properties. According to a correlation study between the heat input, the volume fraction of the AF, and the Charpy impact properties, ductile fractures occurred predominantly when the fraction of the AF was 20% or higher; moreover, the Charpy absorbed energy was excellent at more than 100 J. These findings suggest that the improvement of the Charpy impact properties of the HAZs was associated with the active nucleation of AF in the oxide-containing steel HAZs.

키워드

과제정보

연구 과제 주관 기관 : POSCO, 한국과학재단

참고문헌

  1. K. S. Bang, C. Park, H. C. Jung, and J. B. Lee, Met. Mater. Int. 15, 471 (2009). https://doi.org/10.1007/s12540-009-0471-3
  2. R. Denys, Pipeline Technology, Vol.I, p. 1, Elsevier, Amsterdam, Netherland (2000).
  3. S. A. Dye, Metal Construction and British Welding Journal 2, 111 (1970).
  4. K. T. Corbett, R. R. Bowen, and C. W. Petersen, Intern. J. of Offshore and Polar Engineering 14, 75 (2004).
  5. J. Y. Koo, M. J. Luton, N. V. Bangaru, R. A. Petkovic, D. P. Fairchild, C. W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi, Proc. of The Thirteenth Intern. Offshore and Polar Engineering Conf., p.10, Honolulu, Hawaii, USA (2003).
  6. D. P. Fairchild, M. L. Macia, S. D. Papka, C. W. Petersen, J. H. Stevens, S. T. Barbas, N. V. Bangaru, J. Y. Koo, and M. J. Luton, Proc. Intern. Pipe Dreamer's Conf., p. 307, Yokohama, Japan (2002).
  7. J. Takamura and S. Mizoguchi, Proc. 6th Int. Iron Steel Congr., p. 591, ISIJ, Nagoya, Japan (1990).
  8. S. Mizoguchi and J. Takamura, Proc. 6th Int. Iron Steel Congr., p. 598, ISIJ, Nagoya, Japan (1990).
  9. T. Sawai, M. Wakoh, Y. Ueshima, and S. Mizoguchi, Proc. 6th Int. Iron Steel Congr., p. 605, ISIJ, Nagoya, Japan (1990).
  10. S. Ogibayashi, K. Yamaguchi, M. Hirai, H. Goto, H. Yamaguchi, and K. Tanaka, Proc. 6th Int. Iron Steel Congr., p.612, ISIJ, Nagoya, Japan (1990).
  11. T. Maki, Mater. Jpn. 36, 937 (1997). https://doi.org/10.2320/materia.36.937
  12. J. M. Gregg and H. K. D. K. Bhadeshia, Acta Mater. 45, 739 (1997). https://doi.org/10.1016/S1359-6454(96)00187-5
  13. M. Enomoto, Metals and Materials 4, 115 (1998). https://doi.org/10.1007/BF03026028
  14. F. J. Barbaro, P. Krauklis, and K. E. Easterling, Mat. Sci. Tech. 5, 1057 (1989). https://doi.org/10.1179/026708389790340888
  15. S. Y. Shin, K. Oh, and S. Lee, J. Kor. Inst. Met. & Mater. 47, 59 (2009).
  16. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi, Thermomechanical Processing of High-strength Low-alloy Steels, p. 80, Butterworth & Co. Ltd., London, UK (1988).
  17. ASTM Standard E23-09, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, p. 1, ASTM, West Conshohocken, USA (2009).
  18. G. Krauss and S. W. Thompson, ISIJ 35, 937 (1995). https://doi.org/10.2355/isijinternational.35.937
  19. C. H. Lee, H. K. D. H. Bhadeshia, and H.-C. Lee, Mater. Sci. Eng. A 360, 249 (2003). https://doi.org/10.1016/S0921-5093(03)00477-5
  20. M. Diaz-Freuntes, A. Iza-Mendia, and I. Gutierrez, Metall. Mater. Trans. A 34, 2505 (2003). https://doi.org/10.1007/s11661-003-0010-7
  21. B. W. Choi, D. H. Seo, and J. I. Jang, Met. Mater. Int. 15, 373 (2009). https://doi.org/10.1007/s12540-009-0373-4
  22. H. K. D. H. Bhadeshia, Bainite in Steels, IOM Communications Ltd. (2001).