DOI QR코드

DOI QR Code

Crystallized Nano-thick TiO2 Films with Low Temperature ALD Process

저온 원자층증착법으로 제조된 결정질 TiO2 나노 박막

  • Park, Jongsung (Department of Materials Science and Engineering, University of Seoul) ;
  • Han, Jeungjo (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 박종성 (서울시립대학교 신소재공학과) ;
  • 한정조 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2009.12.20
  • Published : 2010.05.22

Abstract

To enhance the efficiency of dye sensitized solar cells, we proposed crystalline anatase-$TiO_{2}$ by using a low temperature process ($150^{\circ}C{\sim}250^{\circ}C$). We successfully fabricated 30 nm-$TiO_{2}$ at a fixed atomic layer deposition condition of 1.0 sec of TDMAT pulse, 20 sec of TDMAT purge, 0.5 sec of H$_{2}$O pulse, and 20 sec of H$_{2}$O purge. In order to examine the microstructure, phase, and band-gap of the TiO$_{2}$ respectively, we employed a Nano-Spec, transmission electron microscope, high resolution XRD, Auger electron spectroscopy, scanning probe microscope, and UV-VIS-NIR. We were able to fabricate a crystalline anatase-phase of 30 nm-TiO$_{2}$ successfully at temperatures above $180^{\circ}C$. Our results showed that our proposed low temperature ALD process (below $200^{\circ}C$) might be applicable to glass and flexible polymer substrates.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. B. O'Regan and M. Gratzel, Nature 353, 737 (1991) https://doi.org/10.1038/353737a0
  2. J. M. Olson, D. J. Friedman, and S. Kurtz, Handbook of Photovoltaic Science and Engineering, 1st ed., John Wiley & Sons Ltd., England (2002)
  3. A. Kay and M. Gratzel, Sol. Energy Mater. Sol. Cells 44, 99 (1996) https://doi.org/10.1016/0927-0248(96)00063-3
  4. W. J. Lee, D. Y. Lee, J. S. Song, and B. K. Min, Met. Mater. Int. 11, 465 (2005) https://doi.org/10.1007/BF03027496
  5. H. Pettersson and T. Gruszecki, Sol. Energy Mater. Sol. Cells 70, 203 (2001) https://doi.org/10.1016/S0927-0248(01)00025-3
  6. S. Y. Dai, K. J. Wang, J. Weng, Y. F. Sui, Y. Huang, S. F. Xiao, S. H. Chen, L. H. Hu, F. T. Kong, X. Pan, C. W. Shi, and L. Guo, Sol. Energy Mater. Sol. Cells 85, 447 (2005) https://doi.org/10.1016/j.solmat.2004.10.001
  7. T. Yamaguchi, N. Tobe, D. Matsumoto, and H. Arakawa, Chem. Commun. 45, 4767 (2007)
  8. S. M. Jeon, Y. W. Lee, J. H. Kim, J. K. Lee, K. H. Char, and B. H. Sohn, Reactive and Functional Polymers 69, 558 (2008) https://doi.org/10.1016/j.reactfunctpolym.2009.01.007
  9. N.-G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, and A. J. Frank, J. Phys. Chem. B 103, 3308 (1999) https://doi.org/10.1021/jp984529i
  10. T. Suntola, Thin Solid Films 216, 84 (1992) https://doi.org/10.1016/0040-6090(92)90874-B
  11. T. Suntola, M. Mohai, J. L. Sullivan, and S. O. Saied, Appl. Surf. Sci. 84, 357 (1995) https://doi.org/10.1016/0169-4332(94)00545-1
  12. Y. Du, X. Du, and S. M. George, Thin Solid Films 491, 43 (2005) https://doi.org/10.1016/j.tsf.2005.05.051
  13. V. Sammelselg, A. Rosental, A. Tarre, L. Niinisto, K. Heiskanen, K. Ilmonen, L. S. Johansson, and T. Uustare, Appl. Surf. Sci. 134, 78 (1998) https://doi.org/10.1016/S0169-4332(98)00224-4
  14. K. J. Yoon and O. S. Song, Kor. J. Mater. Res. 18, 515 (2008) https://doi.org/10.3740/MRSK.2008.18.10.515
  15. D. H. Kim, Y. J. Kim, J. H. Park, and J. H. Kim, Mater. Sci. Eng. C 24, 289 (2004) https://doi.org/10.1016/j.msec.2003.09.062
  16. D. B. Williams and C. B. Carter, Transmission Electron Microscopy Basics, 1st ed., p.152-170, Plenum Press, NewYork, U.S.A. (1996)
  17. V. Pore, A. Rahtu, M. Leskel$\ddot{a}$, M. Ritala, T. Sajavaara, and J. Keinonen, Chemical Vapor Deposition 10, 143 (2004) https://doi.org/10.1002/cvde.200306289
  18. D. Hausmann, E. Kim, J. Becker, and R. Gordon, Chem. Mater. 14, 4350 (2002) https://doi.org/10.1021/cm020357x
  19. M. Ritala, M. Leskela, and E. Rauhala, Chem. Mater. 6, 556 (1994) https://doi.org/10.1021/cm00040a035
  20. J. D. Ferguson, A. W. Weimer, and S. M. George, Thin Solid Films 413, 16 (2002) https://doi.org/10.1016/S0040-6090(02)00431-5
  21. O. Nilsen, H. Fjellvag, and A. Kjekshus, Thin Solid Films 444, 44 (2003) https://doi.org/10.1016/S0040-6090(03)01101-5
  22. G. T. Lim and D. H. Kim, Thin Solid Films 498, 254 (2006) https://doi.org/10.1016/j.tsf.2005.07.121
  23. M. Ritala, M. Leskela, L. Niinisto, and P. Haussalo, Chem. Mater. 5, 1174 (1993) https://doi.org/10.1021/cm00032a023
  24. J. Aarik, A. Aidla, T. Uustare, and V. Sammelselg, J. Crys. Growth 148, 268 (1995) https://doi.org/10.1016/0022-0248(94)00874-4