DOI QR코드

DOI QR Code

Effect of the Heat Input on the Tensile Properties in Arc Brazing of Ferritic Stainless Steel using Cu-Si Insert Alloy

Cu-Si계 삽입금속을 사용한 페라이트계 스테인리스강의 아크 브레이징에서 인장성질에 미치는 입열량의 영향

  • Kim, Myung-Bok (National Core Research Center (NCRC) for Hybrid Material Solution) ;
  • Kim, Sang-Ju (Dept. of Material Science and Engineering, Pusan National University) ;
  • Lee, Bong-Keun (Dept. of Material Science and Engineering, Pusan National University) ;
  • Yuan, Xin Jian (Dept. of Material Science and Engineering, Pusan National University) ;
  • Yoon, Byoung-Hyun (Welding Research Center, Research Institute of Industrial Science and Technology) ;
  • Woo, In-Su (Technical Research Labs., POSCO) ;
  • Kang, Chung-Yun (Dept. of Material Science and Engineering, Pusan National University)
  • 김명복 (하이브리드소재솔루션 국가핵심연구센터) ;
  • 김상주 (부산대학교 재료공학부) ;
  • 이봉근 (부산대학교 재료공학부) ;
  • 원신건 (부산대학교 재료공학부) ;
  • 윤병현 (포항산업과학연구원 용접센터) ;
  • 우인수 (POSCO 기술연구소) ;
  • 강정윤 (부산대학교 재료공학부)
  • Received : 2010.01.04
  • Published : 2010.04.15

Abstract

The effects of heat input and different microstructureswere investigated on the tensile-shear properties of an arc-brazed joint of theferritic stainless steel 429EM using a Cu-Si insert alloy. The brazing speed was fixed at 800 mm/min whilethe brazing current varied from 80 to 120A. For abrazing current lower than 100A, fracturing occurred at the joint root in the direction perpendicular to the tensile load. As the brazing current increased to 120A, fracturing occurred at the base metal or the joint root. The joint and the base metal had very similar yield and tensile load values. However, the amount of elongation was decreased considerably compared to when the base metal was used. The fracturing began at the triple point of the root part and was classified into three types. The difference in the tensile-shear properties was closely related to the three fracture types.

Keywords

Acknowledgement

Supported by : (주)포스코, 과학기술부

References

  1. M. Atsushi, H. Junichiro, and F. Osamu, JFE TR. 4, 61 (2004)
  2. M. Atshshi, H. Junichiro, and F. Osamu, J. Society of Automotive Engineers of Japan 55, 25 (2001)
  3. You Xiang-mi, Jiang Zhou-hua, and Li Hua-bing, J. Iron and Steel Research Inter. 14,24 (2007) https://doi.org/10.1016/S1006-706X(07)60053-3
  4. J. K. Kim, Y. H. Kim, S. H. Uhm, J. S. Lee, and K. Y. Kim, Corros. Sci. 51,2716 (2009) https://doi.org/10.1016/j.corsci.2009.07.008
  5. E. Taban, E. Deleu, A. Dhooge, and E. Kaluc, Mater. Desig. 30, 1199 (2009)
  6. D. Kim and H. Kim, J. Kor. Inst. Met. & Mater. 46, 652 (2008)
  7. J. K. Kim, S. G. Hong, K. B. Kang, and C. Y. Kang, Met. Mater. Int. 15, 843 (2009) https://doi.org/10.1007/s12540-009-0843-0
  8. KWJS, Handbook of Welding and Joining 3, 172 (2007)
  9. S. H. Kim and M. Y. Lee, RIST Research Paper 18, 37 (2004)
  10. C. Chovet, and S. Guiheux, la metallurgla Itallana 7, 47 (2006)
  11. D. Iordachescu, L. Quintino, R. Miranda, and G. Pimenta, Mater. Desig. 27,381 (2006) https://doi.org/10.1016/j.matdes.2004.11.010
  12. Yu Zhi-shui, Li Rui-feng, and Qi Kai, Trans. Nonferrous Met. Soc. 16,1391 (2006) https://doi.org/10.1016/S1003-6326(07)60026-0
  13. Li Rui-feng, Yu Zhi-shui, and Qi Kai, Trans. Nonferrous Met. Soc. 16,397 (2006) https://doi.org/10.1016/S1003-6326(06)60068-X
  14. Y. Miyazaki and S. Furusako, Nippon Steel TR. p.95 (2007)